Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can help bridge the gap between physics, chemistry and biology. The TOPAS collaboration is tackling this challenge by extending the current Monte Carlo tool to allow for sub-cellular in silico simulations in a new extension, TOPAS-nBio. TOPAS wraps and extends the Geant4 Monte Carlo simulation toolkit and the new extension allows the modeling of particles down to vibrational energies (∼2eV) within realistic biological geometries. Here we present a validation of biological geometries available in TOPAS-nBio, by comparing our results to two previously published studies. We compare the prediction of strand breaks in a simple linear DNA strand from TOPAS-nBio to a published Monte Carlo track structure simulation study. While TOPAS-nBio confirms the trend in strand break generation, it predicts a higher frequency of events below an energy of 17.5eV compared to the alternative Monte Carlo track structure study. This is due to differences in the physics models used by each code. We also compare the experimental measurement of strand breaks from incident protons in DNA plasmids to TOPAS-nBio simulations. Our results show good agreement of single and double strand breaks predicting a similar increase in the strand break yield with increasing LET.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292291PMC
http://dx.doi.org/10.1016/j.ejmp.2016.12.010DOI Listing

Publication Analysis

Top Keywords

monte carlo
16
strand breaks
12
biological geometries
8
carlo track
8
track structure
8
strand break
8
topas-nbio
6
strand
6
validation radiobiology
4
radiobiology toolkit
4

Similar Publications

Background: This study aimed to assess the histological and radiographic effects of sodium hexametaphosphate (SHMP) as a direct pulp capping (DPC) agent in immature permanent dog premolars.

Methods: A split-mouth design was employed with three healthy 4-month-old Mongrel dogs, each having 36 premolars. The premolars were randomly assigned to either SHMP or MTA.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to investigate the fundamental properties of spot-scanning proton beams and compare them to Monte Carlo (MC) simulations, both with and without CT calibration, using spatially diverse combinations of materials.

Methods: A heterogeneous phantom was created by spatially distributing titanium, wax, and thermocol to generate six scenarios of heterogeneous combinations. Proton pencil beams ranging in energy from 100 to 226.

View Article and Find Full Text PDF

Objective: Deep brain stimulation (DBS) is an effective neurosurgical option for patients with treatment-resistant obsessive-compulsive disorder (OCD). Despite being more costly than neuroablative procedures of comparable efficacy, DBS has gained popularity over the years for its reversibility and adjustability. Although the cost-effectiveness of DBS has been investigated extensively in movement disorders, few economic analyses of DBS for psychiatric disorders exist.

View Article and Find Full Text PDF

This study aimed to identify radiotherapy dosimetric parameters related to local failure (LF)-free survival (LFFS) in patients with lung and liver oligometastases from colorectal cancer treated with stereotactic body radiotherapy (SBRT). We analyzed 75 oligometastatic lesions in 55 patients treated with SBRT between January 2014 and December 2021. There was no constraint or intentional increase in maximum dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!