Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft.

J Vasc Surg

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa. Electronic address:

Published: September 2017

AI Article Synopsis

  • The study investigates using the stromal vascular fraction (SVF) from human liposuction aspirates as a culture-free source of cells for vascular tissue engineering, specifically for vascular grafts.
  • Both SVF cells and cultured adipose-derived mesenchymal stem cells (AD-MSCs) were compared for their ability to differentiate into vascular smooth muscle cells and secrete factors that promote cell migration.
  • The results showed that SVF cells could perform similarly to cultured AD-MSCs in essential functions and were effectively used in biodegradable scaffolds, leading to successful tissue-engineered vascular grafts with high patency rates.

Article Abstract

Objective: One of the rate-limiting barriers within the field of vascular tissue engineering is the lengthy fabrication time associated with expanding appropriate cell types in culture. One particularly attractive cell type for this purpose is the adipose-derived mesenchymal stem cell (AD-MSC), which is abundant and easily harvested from liposuction procedures. Even this cell type has its drawbacks, however, including the required culture period for expansion, which could pose risks of cellular transformation or contamination. Eliminating culture entirely would be ideal to avoid these concerns. In this study, we used the raw population of cells obtained after digestion of human liposuction aspirates, known as the stromal vascular fraction (SVF), as an abundant, culture-free cell source for tissue-engineered vascular grafts (TEVGs).

Methods: SVF cells and donor-paired cultured AD-MSCs were first assessed for their abilities to differentiate into vascular smooth muscle cells (SMCs) after angiotensin II stimulation and to secrete factors (eg, conditioned media) that promote SMC migration. Next, both cell types were incorporated into TEVG scaffolds, implanted as an aortic graft in a Lewis rat model, and assessed for their patency and composition.

Results: In general, the human SVF cells were able to perform the same functions as AD-MSCs isolated from the same donor by culture expansion. Specifically, cells within the SVF performed two important functions; namely, they were able to differentiate into SMCs (SVF calponin expression: 16.4% ± 7.7% vs AD-MSC: 19.9%% ± 1.7%) and could secrete promigratory factors (SVF migration rate relative to control: 3.1 ± 0.3 vs AD-MSC: 2.5 ± 0.5). The SVF cells were also capable of being seeded within biodegradable, elastomeric, porous scaffolds that, when implanted in vivo for 8 weeks, generated patent TEVGs (SVF: 83% patency vs AD-MSC: 100% patency) populated with primary vascular components (eg, SMCs, endothelial cells, collagen, and elastin).

Conclusions: Human adipose tissue can be used as a culture-free cell source to create TEVGs, laying the groundwork for the rapid production of cell-seeded grafts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481505PMC
http://dx.doi.org/10.1016/j.jvs.2016.09.034DOI Listing

Publication Analysis

Top Keywords

svf cells
12
stromal vascular
8
vascular fraction
8
tissue-engineered vascular
8
cell types
8
cell type
8
svf
8
culture-free cell
8
cell source
8
scaffolds implanted
8

Similar Publications

Incorporating autologous patient-derived products has become imperative to enhance the continually improving outcomes in bone tissue engineering. With this objective in mind, this study aimed to evaluate the osteogenic potential of 3D-printed allograft-alginate-gelatin scaffolds coated with stromal vascular fraction (SVF) and platelet-rich fibrin (PRF). The primary goal was to develop a tissue-engineered construct capable of facilitating efficient bone regeneration through the utilization of biomaterials with advantageous properties and patient-derived products.

View Article and Find Full Text PDF

Background: Adipose tissue provides an abundant source of stromal vascular fraction (SVF) cells for immediate administration. It can also give rise to many multipotent adipose-derived stromal cells. SVF is the population of cells obtained from mechanical or enzymatic digestion of lipoaspirate with no necessity for cell culture or expansion.

View Article and Find Full Text PDF

Neuroinflammation is a significant correlate of Parkinson's Disease (PD), with positron emission tomography showing microglial activation early in the PD process and post-mortem tissue containing reactive microglia. Adipose-derived (AD) stromal vascular fraction (SVF) cells have been shown to respond to pro-inflammatory conditions with secretion of anti-inflammatory paracrine factors. This pilot clinical trial was to examine the safety and clinical response using autologous ADSVF to treat PD.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a progressive joint disease, and over 240 million people suffer from symptomatic OA, primarily in the knee, and mainly affects the elderly population over 65. A combination of different risk factors leads to biological changes in the microenvironments of the joints, causing cartilage overload and chondrocyte aging. Adipose-derived MSCs (ADSCs) are demonstrated to improve joint environments with an effective therapy for Knee OA.

View Article and Find Full Text PDF

Single-cell view and a novel protective macrophage subset in perivascular adipose tissue in T2DM.

Cell Mol Biol Lett

December 2024

Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.

Background: Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear.

Methods: To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!