Left Atrial Function Dynamics During Exercise in Heart Failure: Pathophysiological Implications on the Right Heart and Exercise Ventilation Inefficiency.

JACC Cardiovasc Imaging

Department of Cardiology University, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; and the Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy. Electronic address:

Published: October 2017

Objectives: The hypothesis of this study was that left atrial (LA) dynamic impairment during exercise may trigger right ventricular (RV)-to-pulmonary circulation (PC) uncoupling and ventilation inefficiency.

Background: LA function plays a key role in the hemodynamics of heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). Extensive investigation of LA dynamics, however, has been performed exclusively at rest.

Methods: A total of 49 patients with HFrEF, 20 patients with HFpEF, and 32 healthy subjects with normal LA size and reservoir function (LA volume index <34 ml/m and peak left atrial strain [LA-strain] during LA relaxation >23%) were prospectively enrolled. They underwent cardiopulmonary exercise testing and contemporary echo-Doppler assessment of LA-strain and LA-strain rate and of RV-to-PC coupling (pulmonary arterial systolic pressure/tricuspid annular peak systolic excursion ratio), measured at rest, at 40% of predicted peak oxygen consumption, and during recovery.

Results: In control subjects, LA-strain increased during exercise and recovery. Patients with HFpEF exhibited some LA-strain increase during exercise and recovery, whereas no changes occurred in those with HFrEF. The baseline LA-strain rate was greater in control subjects; a significant enhancement during recovery was observed only in this group. In both the HFpEF and HFrEF cohorts, RV-to-PC uncoupling and LA-strain at rest, exercise, and recovery significantly correlated with pulmonary arterial systolic pressure/tricuspid annular peak systolic excursion, as well as ventilation versus carbon dioxide slope, in a continuous fashion across groups (r = -0.63 and r = -0.59, r = -0.65 and r = -0.50, and r = -0.70 and r = -0.53 for control subjects, HFpEF, and HFrEF, respectively; p < 0.05).

Conclusions: In heart failure, an impaired LA-strain response is a key hemodynamic trigger for RV-to-PC uncoupling and exercise ventilation inefficiency with some overlap between HFpEF and HFrEF phenotypes. Reversibility of LA dynamics seems to be an unmet target of specific therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmg.2016.09.021DOI Listing

Publication Analysis

Top Keywords

heart failure
12
control subjects
12
left atrial
8
ejection fraction
8
patients hfpef
8
la-strain rate
8
pulmonary arterial
8
arterial systolic
8
systolic pressure/tricuspid
8
pressure/tricuspid annular
8

Similar Publications

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Aims: To study differences in cardiovascular prevention and hypertension management in primary care in men and women, with comparisons between public and privately operated primary health care (PHC).

Methods: We used register data from Region Stockholm on collected prescribed medication and registered diagnoses, to identify patients aged 30 years and above with hypertension. Age-adjusted logistic regression was used to calculate odds ratios (ORs) with 99% confidence intervals (99% CIs) using public PHC centers as referents.

View Article and Find Full Text PDF

Background: Obesity is a risk factor for heart failure (HF) development but is associated with a lower incidence of mortality in HF patients. This obesity paradox may be confounded by unrecognized comorbidities, including cachexia.

Methods: A retrospective assessment was conducted using data from a prospectively recruiting multicenter registry, which included consecutive acute heart failure patients.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

Left atrial shunting devices: why, what, how, and… when?

Heart Fail Rev

January 2025

Department of Cardiology, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Left atrial (LA) hypertension is central in the pathophysiology of heart failure (HF) in general and of HF with preserved ejection fraction (HFpEF) in particular. Despite approved treatments, a number of HF patients continue experiencing disabling symptoms due to LA hypertension, causing pulmonary congestion, pulmonary hypertension, and right heart dysfunction, at rest and/or during exercise. LA decompression therapies, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!