Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2214/ajr.153.5.1104 | DOI Listing |
Radiographics
January 2015
From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Md (F.D.G., M.R.A., J.A.C.); Division of Radiological Physics, Department of Radiology, Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland (F.S.); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Md (D.A.H.); Department of Radiology, University of Florida College of Medicine, Gainesville, Fla (C.W.D.); and Departments of Radiology, Bioengineering, and Orthopaedic Surgery, Stanford University School of Medicine, Stanford, Calif (G.E.G.). Recipient of a Certificate of Merit award for an education exhibit at the 2012 RSNA Annual Meeting.
Fat suppression is an important technique in musculoskeletal imaging to improve the visibility of bone-marrow lesions; evaluate fat in soft-tissue masses; optimize the contrast-to-noise ratio in magnetic resonance (MR) arthrography; better define lesions after administration of contrast material; and avoid chemical shift artifacts, primarily at 3-T MR imaging. High-field-strength (eg, 3-T) MR imaging has specific technical characteristics compared with lower-field-strength MR imaging that influence the use and outcome of various fat-suppression techniques. The most commonly used fat-suppression techniques for musculoskeletal 3-T MR imaging include chemical shift (spectral) selective (CHESS) fat saturation, inversion recovery pulse sequences (eg, short inversion time inversion recovery [STIR]), hybrid pulse sequences with spectral and inversion-recovery (eg, spectral adiabatic inversion recovery and spectral attenuated inversion recovery [SPAIR]), spatial-spectral pulse sequences (ie, water excitation), and the Dixon techniques.
View Article and Find Full Text PDFPurpose: To test the hypothesis that magnetic resonance (MR) imaging can be used to monitor both intraparenchymal injection of NaCl solution and subsequent radiofrequency ablation (RFA) within tissues pretreated with NaCl, report the low- and high-field-strength MR appearance of NaCl-enhanced RFAs, and compare MR findings with pathologic findings.
Materials And Methods: Ten ex vivo calf liver specimens were injected with saturated NaCl (seven were mixed with methylene blue during MR fluoroscopic monitoring) and reexamined with fast imaging with steady-state progression (FISP), true FISP, reversed FISP (PSIF), and fast spin-echo T2-weighted MR sequences. The NaCl-to-liver contrast-to-noise ratio (CNR) was calculated for various sequences, and CNRs were compared with the Student t test.
Eur Spine J
June 2009
IRCCS Istituto Ortopedico Galeazzi, via R. Galeazzi 4, Milan 20161, Italy.
The projectional nature of radiogram limits its amount of information about the instrumented spine. MRI and CT imaging can be more helpful, using cross-sectional view. However, the presence of metal-related artifacts at both conventional CT and MRI imaging can obscure relevant anatomy and disease.
View Article and Find Full Text PDFJ Magn Reson Imaging
December 2001
University of Southern California, Los Angeles, California, USA.
The purpose of this investigation was to evaluate the diagnostic capabilities of magnetic resonance imaging (MRI) performed using a dedicated-extremity MR system in detecting lesions of the rotator cuff and glenoid labrum. This retrospective study compared the MR results obtained in 47 patients that underwent MRI using a 0.2-Tesla extremity MR system (E-scan) to the surgical findings.
View Article and Find Full Text PDFMagn Reson Imaging
May 1992
Department of Radiology, University of Arizona Health Sciences Center, Tucson 85724.
We retrospectively examined MR images in 82 patients to evaluate the usefulness of short inversion time inversion recovery (STIR) in bone marrow imaging at 0.5 and 1.5 T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!