The origin and formation pathways of the buttery-smelling α-diketones 2,3-butanedione and 2,3-pentanedione upon coffee roasting were studied by means of biomimetic in-bean experiments combined with labeling experiments. For this purpose natural sucrose in the coffee bean was replaced by fully or partially C-labeled sucrose or by a mixture of unlabeled and fully C-labeled sucrose (CAMOLA approach). The obtained data point out that sucrose contributes to both α-diketones; however, its importance and reaction pathways clearly differ. Whereas the major part of 2,3-pentanedione originates from sucrose (about 76%), its contribution to 2,3-butanedione is much lower (about 35%). Formation from intact sugar skeleton is the major pathway generating 2,3-pentanedione from sucrose, whereas 2,3-butanedione is mainly generated by recombination of sucrose fragments. The contribution of glucose and fructose moieties of sucrose to both α-diketones is comparable. Finally, kinetic experiments with fully labeled sucrose showed that the contribution of sucrose changes during roasting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.6b04849DOI Listing

Publication Analysis

Top Keywords

sucrose
11
coffee roasting
8
c-labeled sucrose
8
insight role
4
role sucrose
4
sucrose generation
4
α-diketones
4
generation α-diketones
4
α-diketones coffee
4
roasting origin
4

Similar Publications

Effects of rumen-degradable starch on lactation performance, gastrointestinal fermentation, and plasma metabolomic in dairy cows.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:

This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Evaluating sex and line differences in successive negative contrast and ethanol consumption using alcohol preferring and high alcohol drinking rats.

Alcohol Clin Exp Res (Hoboken)

January 2025

Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University Indianapolis, Indianapolis, Indiana, USA.

Background: The loss of a job or relationship are a couple of examples of unexpected reward loss. Life events, such as these can induce negative emotional reactions (e.g.

View Article and Find Full Text PDF

Polymyxin E (PME), a polymyxin antibiotic, serves as a final resort against antibiotic resistance. Nephrotoxicity is the primary concern when employing PME. To alleviate this issue, researchers have explored strategies including dosing adjustments and innovative formulations.

View Article and Find Full Text PDF

Molecular Mechanisms of Grain Chalkiness Variation in Rice Panicles.

Plants (Basel)

January 2025

Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.

Grain chalkiness adversely affects rice quality, and the positional variation of grain chalkiness within a rice panicle presents a substantial obstacle to quality improvement in China. However, the molecular mechanism underlying this variation is unclear. This study conducted a genetic and physiological analysis of grains situated at distinct positions (upper, middle, and bottom primary branches of the rice panicle, denoted as Y1, Y2, and Y3) within a rice panicle using the Yangdao 6 variety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!