Methods for Investigating Biofilm Inhibition and Degradation by Antimicrobial Peptides.

Methods Mol Biol

Department of Biological Chemistry, Weizmann Institute of Science Rehovot, Rehovot, 76100, Israel.

Published: February 2018

Multidrug-resistant bacteria are a growing problem worldwide. One extensively studied resistance mechanism is biofilm colonization-microbial colonies formed by many Gram-positive and Gram-negative bacteria species. Cationic antimicrobial peptides (AMPs) are innate immune system molecules serving as a first line of defense in fighting invading pathogens. The AMPs' underlying mechanism and biophysical properties required for anti-biofilm activity are not fully known. Here we present protocols for investigating AMPs' biological activity against major stages of biofilm life cycle, namely, planktonic stage (MIC assay), initial adhesion to surfaces (bacterial attachment assay), and formation or degradation of sessile microcolonies (biofilm formation and degradation assays). Furthermore, we demonstrate experiments that allow determination and comparison between peptide biophysical properties (secondary structure, hydrophobicity, and oligomerization) and how they affect their mechanism (peptide-binding assays) of anti-biofilm activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6737-7_22DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
biophysical properties
8
anti-biofilm activity
8
formation degradation
8
methods investigating
4
biofilm
4
investigating biofilm
4
biofilm inhibition
4
inhibition degradation
4
degradation antimicrobial
4

Similar Publications

Bacterial infections pose a threat to human and animal health, and the formation of biofilm exacerbates the microbial threat. New antimicrobial agents to address this challenge are much needed. In this study, several new amphoteric compounds derived from the natural product coumarin were designed and synthesized by mimicking the structure and function of antimicrobial peptides.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Roles of oolong tea extracts in the protection against Staphylococcus aureus infection in Caenorhabditis elegans.

J Food Sci

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.

Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.

View Article and Find Full Text PDF

Directed evolution of antimicrobial peptides using multi-objective zeroth-order optimization.

Brief Bioinform

November 2024

School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China.

Antimicrobial peptides (AMPs) emerge as a type of promising therapeutic compounds that exhibit broad spectrum antimicrobial activity with high specificity and good tolerability. Natural AMPs usually need further rational design for improving antimicrobial activity and decreasing toxicity to human cells. Although several algorithms have been developed to optimize AMPs with desired properties, they explored the variations of AMPs in a discrete amino acid sequence space, usually suffering from low efficiency, lack diversity, and local optimum.

View Article and Find Full Text PDF

Background: Bee venom consists of more than 50 % melittin (MLT), which has anti-cancer, anti-inflammatory, and antimicrobial properties. Bee venom also contains toxic components such as phospholipase A2 (PLA2) and hyaluronidase (HYA), which cause allergic reactions, so the toxic components must be removed to use MLT. In previous studies, analytical methods were used to separate MLT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!