Transcriptional enhancers play a key role in cell type-specific gene expression and cell fate transition. Enhancers are marked by histone H3K4 mono- and di-methylation (H3K4me1/2). The tumor suppressor MLL4 (KMT2D) is a major enhancer H3K4 mono- and di-methyltransferase with a partial functional redundancy with MLL3 (KMT2C). However, the functional role of MLL4 enzymatic activity remains elusive. To address this issue, we have generated MLL4 enzyme-dead knock-in (KI) embryonic stem (ES) cells and mice, which carry Y5477A/Y5523A/Y5563A mutations in the enzymatic SET domain of the MLL4 protein. Homozygous MLL4 enzyme-dead KI (Mll4) mice are embryonic lethal and die around E10.5, which phenocopies Mll4 knockout mice. Interestingly, enzyme-dead MLL4 protein in ES cells is highly unstable. Like Mll4 knockout ES cells, Mll4 ES cells show reduced levels of H3K4me1/2. Furthermore, we show that ectopic expression of histone H3.3 lysine 4-to-methionine (K4M) mutant, which reduces endogenous H3K4 methylation levels in ES cells, decreases the protein stability of MLL3 and MLL4 but not that of H3K4 methyltransferases SET1A (KMT2F) and SET1B (KMT2G). Taken together, our findings indicate that MLL4 protein stability is tightly regulated by its H3K4 methyltransferase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474351 | PMC |
http://dx.doi.org/10.1016/j.jmb.2016.12.016 | DOI Listing |
Skelet Muscle
December 2024
School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
Background: Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Epigenetic modifications in skeletal muscle play a significant role in influencing the niche and cellular states of MuSCs. Mixed-lineage leukemia 4 (Mll4) is a histone methyltransferase critical for activating the transcription of various target genes and is highly expressed in skeletal muscle.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Institute of Microbiology and Virology, Riga Stradins University, Ratsupites 5, LV-1067 Riga, Latvia.
The retinoblastoma gene product (Rb1), a master regulator of the cell cycle, plays a prominent role in cell differentiation. Previously, by analyzing the differentiation of cells transiently overexpressing the ΔS/N DN Rb1 mutant, we demonstrated that these cells fail to differentiate into mature adipocytes and that they constitutively silence through CpG methylation. Here, we demonstrate that the consequences of the transient expression of ΔS/N DN Rb1 are accompanied by the retention of promoter methylation near the TSS under adipogenic differentiation, thereby preventing its expression.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A.
MLL4, also known as KMT2D, is a histone methyltransferase that acts as an important epigenetic regulator in various organogenesis programs. Mutations in the gene are the major cause of Kabuki syndrome, a human developmental disorder that involves craniofacial birth defects, including anomalies in the palate. This study aimed to investigate the role of MLL4 and the underlying mechanisms in the development and growth of the palate.
View Article and Find Full Text PDFNat Cell Biol
December 2024
Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
The ten-eleven translocation (TET) family of dioxygenases maintain stable local DNA demethylation during cell division and lineage specification. As the major catalytic product of TET enzymes, 5-hydroxymethylcytosine is selectively enriched at specific genomic regions, such as enhancers, in a tissue-dependent manner. However, the mechanisms underlying this selectivity remain unresolved.
View Article and Find Full Text PDFJ Biol Chem
August 2024
Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:
Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!