In the present work, milled nanocrystals of a poorly soluble compound using different stabilizers were prepared and characterized. The aim of the study was to evaluate a fundamental set of properties of the formulations prior to i.v. injection of the particles. Two polyethylene oxide containing stabilizers; (distearoyl phosphatidylethanol amine (DSPE)) -PEG2000 and the triblock copolymer Pluronic F127, were investigated, with and without polyvinylpyrrolidone K30/Aerosol OT (PVP/AOT) present. The solubility in water was around 10nM for the compound, measured from nanocrystals, but 1000 times higher in 4% human serum albumin. The particles were physically stable during the time investigated. The zeta potential was around -30 and -10mV for DSPE-PEG2000 and Pluronic F127 stabilized particles, respectively, at the conditions selected. The dissolution rate was similar for all four formulations and similar to the theoretically predicted rate. Critical micelle concentrations were determined as 56nM and 1.4μM for DSPE-PEG2000 and Pluronic F127, respectively. The adsorption isotherms for the PEG lipid showed a maximum adsorbed amount of about 1.3mg/m, with and without PVP/AOT. Pluronic F127 showed a higher maximum amount adsorbed, at around 3.1mg/m, and marginally lower with PVP/AOT present. Calculated data showed that the layer of Pluronic F127 was thicker than the corresponding DSPE-PEG2000 layer. The total amount of particles distributed mainly to the liver, and the hepatocellular distribution in vitro (Liver sinusoidal endothelial cells and Kupffer cells), differed depending on the stabilizing mixture on the particles. Overall, DSPE-PEG2000 stabilized nanocrystals (with PVP/AOT) accumulated to a larger degree in the liver compared to particles with Pluronic F127 on the surface. A theoretical model was developed to interpret in vivo pharmacokinetic profiles, explaining the balance between dissolution and liver uptake. With the present, fundamental data of the nanocrystal formulations, the platform for forthcoming in vivo studies was settled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.12.035 | DOI Listing |
Methods Mol Biol
December 2024
INM-Leibniz Institute for New Materials, Saarbrücken, Germany.
Engineered living materials (ELM) is a new frontier in materials research that uses living microorganisms to augment nonliving materials with lifelike capabilities, such as responding to external stimuli. This is achieved by genetically programming the microorganisms in an ELM with stimulus-sensing modules. A popular stimulus to remotely control various ELM functions is light, which has been realized thanks to optogenetics.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
Purpose: Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast cancer, which express a Nitro reductase gene.
Methods: NITRO Cubosomes were developed using hot homogenization according to 2-full factorial design.
Eur J Pharm Sci
December 2024
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan. Electronic address:
The formation of protein aggregates, which can be immunogenic and lower the efficacy and safety of protein drugs, has been an issue in biopharmaceutical development for more than a decade. Although protein drugs are often shipped as frozen material, the effect of the accidental dropping of frozen proteins, which can occur during shipping and handling, on the physical stability has not been studied. Here, a frozen Fc fusion protein was subjected to dropping stress and the increase in the aggregate concentration was evaluated.
View Article and Find Full Text PDFTher Deliv
December 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
Aim: Voriconazole (VRZ) is highly effective in treating invasive pulmonary aspergillosis (IPA), in addition to hepatotoxicity. Therefore, the current study focuses on the development and characterization of voriconazole-loaded microspheres (VRZ@PCL MSPs) to augment pulmonary localization and antifungal efficacy.
Methods: VRZ@PCL MSPs were fabricated by using the o/w emulsion method.
Biomed Mater
December 2024
Department of Neurosurgery, Ningbo Medical Centre Lihuili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang, 315010, CHINA.
Cranial defect repair remains a significant challenge in neurosurgery, and designing material complexes that can support bone regeneration while minimizing complications such as infection and inflammation could help alleviate this clinical challenge. This study presents a photothermal hydrogel complex with a controlled rapid gelation process, PDA-G-A-H, which integrates photothermal polydopamine nanoparticles (PDA NPs) with gentamycin (G) and alendronate acid (A). Furthermore, the incorporation of the injectable hydrogel Pluronic F127 and collagen (H) made this composite hydrogel (PDA-G-A-H) suitable for the multifaceted needs of cranial defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!