Most natural West Nile virus (WNV) infections in humans and horses are subclinical or sub-lethal and non-encephalitic. Yet, the main focus of WNV research remains on the pathogenesis of encephalitic disease, mainly conducted in mouse models. We characterized host responses during subclinical WNV infection in horses and compared outcomes with those obtained in a novel rabbit model of subclinical WNV infection (Suen et al. 2015. Pathogens, 4: 529). Experimental infection of 10 horses with the newly emerging WNV-strain, WNV, did not result in neurological disease in any animal but transcriptional upregulation of both type I and II interferon (IFN) was seen in peripheral blood leukocytes prior to or at the time of viremia. Likewise, transcript upregulation for IFNs, TNFα, IL1β, CXCL10, TLRs, and MyD88 was detected in lymphoid tissues, while IFNα, CXCL10, TLR3, ISG15 and IRF7 mRNA was upregulated in brains with histopathological evidence of mild encephalitis, but absence of detectable viral RNA or antigen. These responses were reproduced in the New Zealand White rabbits (Oryctolagus cuniculus) experimentally infected with WNV by intradermal footpad inoculation. Kinetics of the anti-WNV antibody response was similar in horses and rabbits, which for both species may be explained by the early IFN and cytokine responses evident in circulating leukocytes and lymphoid organs. Given the similarities to the majority of equine infection outcomes, immunocompetent rabbits appear to represent a valuable small-animal model for investigating aspects of non-lethal WNV infections, notably mechanisms involved in abrogating morbidity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2016.12.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!