Background: A physician is frequently unable to distinguish bacterial from viral infections. ImmunoXpert is a novel assay combining three proteins: tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), interferon gamma induced protein-10 (IP-10), and C-reactive protein (CRP). We aimed to externally validate the diagnostic accuracy of this assay in differentiating between bacterial and viral infections and to compare this test with commonly used biomarkers.

Methods: In this prospective, double-blind, international, multicentre study, we recruited children aged 2-60 months with lower respiratory tract infection or clinical presentation of fever without source at four hospitals in the Netherlands and two hospitals in Israel. A panel of three experienced paediatricians adjudicated a reference standard diagnosis for all patients (ie, bacterial or viral infection) using all available clinical and laboratory information, including a 28-day follow-up assessment. The panel was masked to the assay results. We identified majority diagnosis when two of three panel members agreed on a diagnosis and unanimous diagnosis when all three panel members agreed on the diagnosis. We calculated the diagnostic performance (ie, sensitivity, specificity, positive predictive value, and negative predictive value) of the index test in differentiating between bacterial (index test positive) and viral (index test negative) infection by comparing the test classification with the reference standard outcome.

Findings: Between Oct 16, 2013 and March 1, 2015, we recruited 777 children, of whom 577 (mean age 21 months, 56% male) were assessed. The majority of the panel diagnosed 71 cases as bacterial infections and 435 as viral infections. In another 71 patients there was an inconclusive panel diagnosis. The assay distinguished bacterial from viral infections with a sensitivity of 86·7% (95% CI 75·8-93·1), a specificity of 91·1% (87·9-93·6), a positive predictive value of 60·5% (49·9-70·1), and a negative predictive value of 97·8% (95·6-98·9). In the more clear cases with unanimous panel diagnosis (n=354), sensitivity was 87·8% (74·5-94·7), specificity 93·0% (89·6-95·3), positive predictive value 62·1% (49·2-73·4), and negative predictive value 98·3% (96·1-99·3).

Interpretation: This external validation study shows the diagnostic value of a three-host protein-based assay to differentiate between bacterial and viral infections in children with lower respiratory tract infection or fever without source. This diagnostic based on CRP, TRAIL, and IP-10 has the potential to reduce antibiotic misuse in young children.

Funding: MeMed Diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(16)30519-9DOI Listing

Publication Analysis

Top Keywords

bacterial viral
24
viral infections
24
positive predictive
12
negative predictive
12
assay differentiate
8
bacterial
8
differentiate bacterial
8
viral
8
validation study
8
differentiating bacterial
8

Similar Publications

Background: Leprosy is a chronic infectious disease caused by () However, the emergence of drug-resistant strains of this bacterium, especially multidrug-resistant (MDR) strains, is a serious concern. This study aimed to evaluate the global prevalence of MDR and its implications.

Methods: Using PRISMA guidelines, we systematically reviewed ISI Web of Science, MEDLINE, and EMBASE up to August 2023 to assess the prevalence of MDR .

View Article and Find Full Text PDF

Background: Infectious disease agents pose significant threats to humans, wildlife, and livestock, with rodents carrying a third of these agents, many linked to human diseases. However, the range of pathogens in rodents and the hotspots for disease remain poorly understood.

Aim: This study evaluated the prevalence of viral, bacterial, and parasitic pathogens in rodents in riverine and non-riverine areas in selected districts in Zambia.

View Article and Find Full Text PDF

Unlabelled: Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. ( ) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during infection and the variation of the response in different macrophage subtypes remain obscure.

View Article and Find Full Text PDF

Background: Animals coexist with complex microbiota, including bacteria, viruses, and eukaryotes (e.g., fungi, protists, and helminths).

View Article and Find Full Text PDF

Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!