Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

Fitoterapia

Glycation, Oxidation and Disease Laboratory, Dept. of Research, College of Osteopathic Medicine, Touro University-California, Vallejo, CA, USA. Electronic address:

Published: March 2017

We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (p<0.001). Its main phenolics, caffeic acid and cholorogenic acid were as potent as aminoguanidine-a specific antiglycation agent: IC50 of 0.9mM (p<0.001). Our results suggest that AGE adducts form between fructose and amino acids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2016.12.006DOI Listing

Publication Analysis

Top Keywords

ilex paraguariensis
16
amino acids
12
compatible digestive
12
digestive system
8
paraguariensis extracts
8
inflammatory diseases
8
age formation
8
fructose
5
formation
5
ilex
4

Similar Publications

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Yerba mate (YM, ) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes.

View Article and Find Full Text PDF

Yerba mate beverage is prepared from grown in South America, and its popularity still is increasing. The aim of this study was to show the differences in the content of antioxidant compounds between hot- and cold-prepared mate beverages. The antioxidant capacity of the infusions was tested using the Folin-Ciocalteu, ABTS, and DPPH assays.

View Article and Find Full Text PDF

The mini-cutting physiological condition is vital for the rooting process. For accurate interpretation, considering all mini-cutting responses in an experiment is necessary to identify significant rooting-biomarkers. The study investigates rooting-biomarkers during vegetative propagation, focusing on Ilex paraguariensis (yerba mate) clones of contrasting mini-cutting rooting performance as a case study (i.

View Article and Find Full Text PDF

Background And Aims: Herbal plants may contribute to reducing the incidence of cardiovascular disease. Yerba mate (YM) emerges as a candidate to improve endothelial function, hemodynamics, and heart rate variability (HRV) due to its antioxidant and anti-inflammatory properties, potentially decreasing cardiovascular risk. Therefore, studies are needed to assess the effect of YM ingestion on these parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!