The constructed wetland coupled with biofilm-electrode reactor (CW-BER) is a novel technology to treat wastewater with a relatively high level of total inorganic nitrogen (TIN) concentration. The main objective of this study is to investigate the effects of C/Ns, TIN concentrations, current intensities, and pH on the removal of nitrogen in CW-BER; a control system (CW) was also constructed and operated with similar influent conditions. Results indicated that the current, inorganic carbon source and hydrogen generated by the micro-electric field could significantly improve the inorganic nitrogen removal with in CW-BER, and the enhancement of average removal rate on NH-N, NO-N, and TIN was approximately maintained at 5-28%, 5-26%, and 3-24%, respectively. The appropriate operation conditions were I=10mA and pH=7.5 in CW-BER. In addition, high-throughput sequencing analysis implied that the CW-BER reactor has been improved with the relative abundance of autotrophic denitrifying bacteria (Thiobacillus sp.).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.12.046DOI Listing

Publication Analysis

Top Keywords

inorganic nitrogen
12
nitrogen removal
8
constructed wetland
8
autotrophic denitrifying
8
denitrifying bacteria
8
cw-ber
5
high efficiency
4
inorganic
4
efficiency inorganic
4
nitrogen
4

Similar Publications

Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing.

ACS Appl Mater Interfaces

January 2025

Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.

The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.

View Article and Find Full Text PDF

The role and progress of zeolites in photocatalytic materials.

Environ Res

January 2025

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China. Electronic address:

This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.

View Article and Find Full Text PDF

China is the largest producer and consumer of tobacco ( L.) in the world, and the cultivation and production of tobacco have extremely high economic value and social influence. Applying organic-inorganic fertilizer is a key strategy for boosting tobacco yield and quality.

View Article and Find Full Text PDF

Rivers link land and sea, playing an important role in the global carbon and nitrogen cycles. By conducting surveys and research on river flow in a specific region, we can gain a better understanding of the nitrogen and carbon sinks in the area and their contributions to the environment. In this study, we conducted bi-annual sampling and monitoring of river flow in the Pearl River Delta downstream of Zhuhai, China, and collected hydrological information.

View Article and Find Full Text PDF

Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!