Background: Glioblastoma is a high-grade cerebral tumor with local recurrence and poor outcome. Photodynamic therapy (PDT) is a localized treatment based on the light activation of a photosensitizer (PS) in the presence of oxygen, which results in the formation of cytotoxic species. The delivery of fractionated light may enhance treatment efficacy by reoxygenating tissues.

Objective: To evaluate the efficiency of two light-fractionation schemes using immunohistological data.

Materials And Methods: Human U87 cells were grafted into the right putamen of 39 nude rats. After PS precursor intake (5-ALA), an optic fiber was introduced into the tumor. The rats were randomly divided into three groups: without light, with light split into 2 fractions and with light split into 5 fractions. Treatment effects were assessed using brain immunohistology.

Results: Fractionated treatments induced intratumoral necrosis (P < 0.001) and peritumoral edema (P = 0.009) associated with a macrophagic infiltration (P = 0.006). The ratio of apoptotic cells was higher in the 5-fraction group than in either the sham (P = 0.024) or 2-fraction group (P = 0.01). Peripheral vascularization increased after treatment (P = 0.017), and these likely new vessels were more frequently observed in the 5-fraction group (P = 0.028).

Conclusion: Interstitial PDT with fractionated light resulted in specific tumoral lesions. The 5-fraction scheme induced more apoptosis but led to greater peripheral neovascularization. Lasers Surg. Med. 49:506-515, 2017. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.22620DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
light split
8
split fractions
8
light
6
interstitial photodynamic
4
therapy glioblastoma
4
glioblastoma light
4
light fractionation
4
fractionation preclinical
4
preclinical model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!