Chitosan scaffolds have gained much attention in various tissue engineering applications, but the effect of their microstructure on cell-material spatial interactions remains unclear. Our objective was to evaluate the effect of chitosan-based matrices doping with chitin nano-whiskers (CNW) on adhesion, spreading, cytoskeleton structure, and proliferation of rat bone marrow stromal cells (BMSCs). The behavior of BMSCs during culture on chitosan-CNW films was determined by the molecular mass, hydrophobicity, porosity, crosslinking degree, protonation degree and molecular structure of the composite chitosan-CNW films. The shape, spreading area, cytoskeleton structure, and proliferation of BMSCs on chitosan matrices with a crystalline structure and high porosity were similar to that observed for BMSCs cultured on polystyrene tissue culture plates. The amorphous polymer structure and high swelling led to a decrease in the spreading area and cell proliferation. Thus, we can control the behavior of cells in culture (adhesion, spreading, and proliferation) by changing the physico-chemical properties of the chitosan-CNW films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-016-5822-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!