Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanism of inactivation of mammalian voltage-gated Na channels involves transient interactions between intracellular domains resulting in direct pore occlusion by the IFM motif and concomitant extracellular interactions with the β1 subunit. Naβ1 subunits constitute single-pass transmembrane proteins that form protein-protein associations with pore-forming α subunits to allosterically modulate the Na influx into the cell during the action potential of every excitable cell in vertebrates. Here, we explored the role of the intracellular IFM motif of rNa1.4 (skeletal muscle isoform of the rat Na channel) on the α-β1 functional interaction and showed for the first time that the modulation of β1 is independent of the IFM motif. We found that: (1) Na1.4 channels that lack the IFM inactivation particle can undergo a "C-type-like inactivation" albeit in an ultraslow gating mode; (2) β1 can significantly accelerate the inactivation of Na1.4 channels in the absence of the IFM motif. Previously, we identified two residues (T109 and N110) on the β1 subunit that disrupt the α-β1 allosteric modulation. We further characterized the electrophysiological effects of the double alanine substitution of these residues demonstrating that it decelerates inactivation and recovery from inactivation, abolishes the modulation of steady-state inactivation and induces a current rundown upon repetitive stimulation, thus causing a general loss of function. Our results contribute to delineating the process of the mammalian Na channel inactivation. These findings may be relevant to the design of pharmacological strategies, targeting β subunits to treat pathologies associated to Na current dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00249-016-1193-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!