A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Induction of H7N9-Cross-Reactive Antibody-Dependent Cellular Cytotoxicity Antibodies by Human Seasonal Influenza A Viruses that are Directed Toward the Nucleoprotein. | LitMetric

Antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) against avian influenza virus subtypes, including H7N9 and H5N1, have been detected in human sera. Using NK cell activation and NK cytotoxicity assays, we compared ADCC-mediating antibodies (ADCC-Abs) in sera collected from healthy infants, children and adults against H7N9 virus-infected cells and recombinant hemagglutinin (HA), neuraminidase (NA), and nucleoprotein (NP) proteins. High titers of ADCC-Abs against H7N9 virus-infected cells were detected in sera from adults and children but not infants. ADCC-Abs titers directed against H7N9 HA or NA proteins. Further analysis showed that ADCC-Abs titers were significantly higher toward H7N9 NP, as compared with H7N9 HA or NA proteins, and correlated strongly with ADCC-Abs titers against H7N9 virus-infected cells. Indeed, ADCC-Abs to NPs of seasonal H1N1 and H3N2 viruses correlated strongly with ADCC-Abs to H7N9 NP, suggesting that seasonal influenza infections and vaccinations may induce these cross-reactive antibodies. Targeting ADCC-Abs to internal proteins may be a potential mechanism of universal vaccine design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853654PMC
http://dx.doi.org/10.1093/infdis/jiw629DOI Listing

Publication Analysis

Top Keywords

h7n9 virus-infected
12
virus-infected cells
12
adcc-abs titers
12
antibody-dependent cellular
8
cellular cytotoxicity
8
seasonal influenza
8
h7n9
8
adcc-abs
8
adcc-abs h7n9
8
h7n9 proteins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!