Auditory feedback plays an important role in vocal learning and, more generally, in fine-tuning the acoustic features of communication signals. So far, only a few studies have assessed the developmental onset of auditory feedback. The Lombard effect, a well-studied audio-vocal phenomenon, refers to an increase in vocal loudness of a subject in response to an increase in background noise. Here, we studied the time course of the Lombard effect in developing bats, We show that infant bats produced louder vocalizations in noise than in silence at an age of only 2 weeks. In contrast, the infant bats' morphology and vocalizations changed gradually until 2 months of age. Furthermore, we found that the Lombard magnitude, i.e. how much the bats increased their vocal loudness in noise relative to silence, correlated positively with the age of the infant bats. We conclude that the Lombard effect features an early developmental origin, indicating a fast maturation of the underlying neural circuits for audio-vocal feedback.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.151050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!