Transposon mutagenesis and subsequent phenotype-driven screening have been extensively used to annotate gene function and uncover the mechanisms of biological phenomena. During this process, the resulting phenotypic differences are specifically attributable to the disrupted genes. In this study, the complementation of the mini-Tn10 transposon-disrupted gene gntP did not restore the germination ability of the Bacillus thuringiensis MT1518-1 mutant to the wild-type level. Genome sequencing identified 186 unlinked mutations on the chromosome of the mutant MT1518-1, including one frameshift mutation in the germination-related gene exsA. We randomly selected 19 mini-Tn10 mutants for high throughput genome sequencing. The sequencing data revealed that incidental mutations occurred frequently on their chromosomes, including 2343 single-nucleotide polymorphisms, three insertions and one deletion. We also found that stressful conditions are the underlying cause for the appearance of incidental mutations. Caution is warranted when attributing the observed phenotypic changes to the transposon-disrupted genes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnw293DOI Listing

Publication Analysis

Top Keywords

incidental mutations
12
transposon mutagenesis
8
genome sequencing
8
mutations occur
4
occur frequently
4
frequently transposon
4
mutagenesis transposon
4
mutagenesis subsequent
4
subsequent phenotype-driven
4
phenotype-driven screening
4

Similar Publications

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

A 52-year-old female patient with a history of atrial septal defect repair presented with progressive dyspnea and echocardiographic findings suggestive of pulmonary hypertension (PH). Incidentally, a lung mass was discovered on computed tomography (CT). Initial evaluation revealed World Health Organization functional class III symptoms and significant weight loss.

View Article and Find Full Text PDF

Persons with hemophilia A (PWHA) lack clotting factor VIII (FVIII) due to a genetic mutation in the F8 gene. The administration of FVIII concentrate leads to the development of neutralizing anti-FVIII antibodies (inhibitors) in about 30% of children with severe hemophilia A. The other 70% of children do not mount a detectable antibody response, suggesting that they may have developed tolerance towards FVIII.

View Article and Find Full Text PDF

Prenatal cfDNA Sequencing and Incidental Detection of Maternal Cancer.

N Engl J Med

December 2024

From the Prenatal Genomics and Therapy Section, Center for Precision Health Research (A.E.T., D.W.B.), and the Section on Social Network Methods, Social and Behavioral Research Branch (J.L.), National Human Genome Research Institute, the Women's Malignancies Branch (C.M.A., I.S.G., P.S.R.) and the Cancer Data Science Laboratory (P.S.R.), Center for Cancer Research, National Cancer Institute, Radiology and Imaging Sciences, Clinical Center (A.A.M., B.R.), and the Office of the Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.W.B.), National Institutes of Health, Bethesda, and Leidos Biomedical Research, Frederick (M.P.) - both in Maryland.

Background: Cell-free DNA (cfDNA) sequence analysis to screen for fetal aneuploidy can incidentally detect maternal cancer. Additional data are needed to identify DNA-sequencing patterns and other biomarkers that can identify pregnant persons who are most likely to have cancer and to determine the best approach for follow-up.

Methods: In this ongoing study we performed cancer screening in pregnant or postpartum persons who did not perceive signs or symptoms of cancer but received unusual clinical cfDNA-sequencing results or results that were nonreportable (i.

View Article and Find Full Text PDF

Incidental Detection of Maternal Cancer Following Cell-Free DNA Screening for Fetal Aneuploidies.

Clin Chem

January 2025

Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Institute, National Institutes of Health, Bethesda, MD, United States.

Background: Prenatal cell-free DNA (cfDNA) screening is a success story of clinical genomics that has translated to and transformed obstetric care. It is a highly sensitive and specific method of screening for the most common fetal aneuploidies, including trisomies 13, 18, and 21. While primarily designed to detect fetal chromosomal abnormalities, the test also analyzes maternal cfDNA, which can complicate interpretation of results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!