Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma. Indeed, Wnt5a overexpression associated with tumor-promoting stem-like characteristics (TPC) in defining the character of highly infiltrating mesenchymal glioblastoma cells (Wnt5a). Inhibiting Wnt5a in mesenchymal glioblastoma TPC suppressed their infiltrating capability. Conversely, enforcing high levels of Wnt5a activated an infiltrative, mesenchymal-like program in classical glioblastoma TPC and Wnt5a mesenchymal TPC. In intracranial mouse xenograft models of glioblastoma, inhibiting Wnt5a activity blocked brain invasion and increased host survival. Overall, our results highlight Wnt5a as a master regulator of brain invasion, specifically TPC, and they provide a therapeutic rationale to target it in patients with glioblastoma. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-16-1693 | DOI Listing |
Cell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.
Some of the millions of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have developed new sequelae after recovering from the initial disease, termed post-acute sequelae of coronavirus disease 2019 (PASC). One symptom is anxiety, which is likely due to three etiologies: brain structural changes, neuroendocrine disruption, and neurotransmitter alterations. This review provides an overview of the current literature on the pathophysiological pathways linking coronavirus disease 2019 to anxiety, as well as the possible mechanisms of action in which an increasingly scrutinized treatment method, enhanced external counter-pulsation (EECP), is able to alleviate anxiety.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy.
A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β (Aβ) in and Alzheimer's disease (AD) models, suggesting a possible use in the treatment of this neurodegenerative disorder. However, several compounds, administered parenterally and orally, are unable to reach the brain due to the presence of the blood-brain barrier (BBB) which prevents the passage of external substances, such as proteins, peptides, or phytocompounds, representing a limit to the development of treatment for neurodegenerative diseases, such as AD. The combination of nano vesicular systems, as colloidal systems, and nose to brain (NtB) delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases, including the use of natural molecules in combination therapy for AD.
View Article and Find Full Text PDFAIMS Neurosci
October 2024
Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy.
The purpose of the present study was to investigate the effects of neuromodulation techniques, including transcranial direct current stimulation, transcranial magnetic stimulation, and deep brain stimulation, on the treatments of nicotine dependence. Specifically, our objective was to assess the existing evidence by conducting an umbrella review of systematic reviews. The quality of the included studies was evaluated using the standardized tools designed to evaluate systematic reviews.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Special Region of Yogyakarta, 55281, Indonesia.
Background: Glioma is the second most common type of brain tumor, accounting for 24% of all brain tumor cases. The current diagnostic procedure is through an invasive tissue sampling to obtain histopathological analysis, however, not all patients are able to undergo a high-risk procedure. Circulating microRNAs (miRNAs) are considered as promising biomarkers for glioma due to their sensitivity, specificity, and non-invasive properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!