Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Online data centers (ODCs) are becoming increasingly popular for making health-related data available for research. Such centers provide good privacy protection during analysis by trusted researchers, but privacy concerns may still remain if the system outputs are not sufficiently anonymized. In this article, we propose a method for anonymizing analysis outputs from ODCs for publication in academic literature.
Methods: We use as a model system the Secure Unified Research Environment, an online computing system that allows researchers to access and analyze linked health-related data for approved studies in Australia. This model system suggests realistic assumptions for an ODC that, together with literature and practice reviews, inform our solution design.
Results: We propose a two-step approach to anonymizing analysis outputs from an ODC. A data preparation stage requires data custodians to apply some basic treatments to the dataset before making it available. A subsequent output anonymization stage requires researchers to use a checklist at the point of downloading analysis output. The checklist assists researchers with highlighting potential privacy concerns, then applying appropriate anonymization treatments.
Conclusion: The checklist can be used more broadly in health care research, not just in ODCs. Ease of online publication as well as encouragement from journals to submit supplementary material are likely to increase both the volume and detail of analysis results publicly available, which in turn will increase the need for approaches such as the one suggested in this paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651952 | PMC |
http://dx.doi.org/10.1093/jamia/ocw152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!