The pro-inflammatory chemokine interleukin-8 (CXCL8) exerts its function by establishing a chemotactic gradient in infected or damaged tissues to guide neutrophil granulocytes to the site of inflammation via its G protein-coupled receptors (GPCRs) CXCR1 and CXCR2 located on neutrophils. Endothelial glycosaminoglycans (GAGs) have been proposed to support the chemotactic gradient formation and thus the inflammatory response by presenting the chemokine to approaching leukocytes. In this study, we show that neutrophil transmigration in vitro can be reduced by adding soluble GAGs and that this process is specific with respect to the nature of the glycan. To further investigate the GAG influence on neutrophil migration, we have used an engineered CXCL8 mutant protein (termed PA401) which exhibits a much higher affinity towards GAGs and an impaired GPCR activity. This dominant-negative mutant chemokine showed anti-inflammatory activity in various animal models of neutrophil-driven inflammation, i.e. in urinary tract infection, bleomycin-induced lung fibrosis, and experimental autoimmune uveitis. In all cases, treatment with PA401 resulted in a strong reduction of transmigrated inflammatory cells which became evident from histology sections and bronchoalveolar lavage. Since our CXCL8-based decoy targets GAGs and not GPCRs, our results show for the first time the crucial involvement of this glycan class in CXCL8/neutrophil-mediated inflammation and will thus pave the way to novel approaches of anti-inflammatory treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2016.12.008 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain.
Senescent cells are involved in age-related disorders in different organs and are therapeutic targets for fibrotic and chronic pathologies. Immune-modulating agents, able to enhance senescent cell detection and elimination by endogenous immune cells, have emerged as pharmacological strategies. We report herein a nanoparticle for immune cell-mediated senolytic therapy designed to recruit immune cells in response to specific enzymatic matrix metalloproteinase-3 (MMP-3) activity in the senescence-associated secretory phenotype.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.
Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.
View Article and Find Full Text PDFBiomedicines
December 2024
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies.
View Article and Find Full Text PDFLab Chip
January 2025
James Watt School of Engineering, Advanced Research Centre (ARC), University of Glasgow, Chapel Lane, Glasgow G11 6EW, UK.
Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!