It is described the reproducible formulation and complete physicochemical characterization of nanohybrids based on magnetite (FeO) cores embedded within a polyethylenimine (PEI) matrix. Particle size, surface electrical charge, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) analyses, and magnetic field-responsive behaviour characterizations defined that the 4:3 (FeO:PEI) weight proportion led to the best production performances of magnetically responsive nanocomposites in which the magnetic nuclei are completely covered by the polymeric shell. Agarose gel electrophoresis assays demonstrated the capacity of the FeO/PEI particles to condense, release, and protect the DNA against enzymatic degradation. In vitro assays were performed to evaluate the transfection efficiency (up to 4.5% of transfected HEK-293 cells at a 10/1 PEI/DNA ratio), iron absorption by D1-mesenchymal stem cells (D1-MSCs, high values after only 15min of magnetic incubation), influence on metabolic activity (negligible effect up to 44μg nanocomposites/10 cells), and cell isolation capacity of the core/shell particles (significant increase in the retention of D1-MSCs transduced with green fluorescent protein). The FeO/PEI nanohybrids hold promising characteristics suggestive of their capacity for transfection and cell isolation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.12.042DOI Listing

Publication Analysis

Top Keywords

cell isolation
12
design characterization
4
characterization magnetite/pei
4
magnetite/pei multifunctional
4
multifunctional nanohybrid
4
nanohybrid non-viral
4
non-viral vector
4
vector cell
4
isolation system
4
system described
4

Similar Publications

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

[Exploration of CCL11 and sTNFR2 as potential biomarkers for the efficacy of lymphocyte immunotherapy in women with unexplained recurrent spontaneous abortion].

Zhonghua Fu Chan Ke Za Zhi

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, State Key Laboratory of Female Fertility Promotion, National Clinical Research Center for Obstetric and Gynecologic Diseases, Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing100191, China.

To explore biomarkers for the efficacy of lymphocyte immunotherapy (LIT) treating women with unexplained recurrent spontaneous abortion (URSA). Serum samples from 24 URSA potients who received LIT were collected at Peking University Third Hospital from December 2014 to June 2015. Semiquantitative sandwich-based antibody arrays containing 40 cytokines were used to screen target immune cytokines in the peripheral blood of URSA patients before and after LIT.

View Article and Find Full Text PDF

In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!