Estrus detection in buffaloes has been a major concern for decades, and lack of reliable methods affects their effective reproductive management. Luteinizing hormone (LH) detection in urine is in practice for several mammals for timed insemination, whereas very few reports are available on buffalo urinary LH. The focus of this study is to detect the presence of LH in buffalo urine, quantitate variation in urinary LH during different estrous cycle phases and examine the duration of mid-cycle LH window. Nearly hundred buffaloes were examined, longitudinal urine samples (n=42) were collected from seventeen animals and classified into respective phases based on several estrus detection parameters. The urinary LH was detected using bovine LH ELISA kit validated for serum/plasma/tissue homogenate. Detection of buffalo LH in the neat urine convincingly proved the competence of the bovine LH kit. Variation in the LH range was observed between different phases of estrous cycle and significant fold variation (P<0.05) was noticed during estrus phase (1.01±0.23) with average baseline value of 46.73±3.36mIU/mL. Interestingly, an extended window (A1-A3) of mid-cycle LH surge was observed due to its lingering excretion in urine. The results, altogether, revealed that LH can be detected in buffalo urine with noticeable fold variation during estrus phase and the extended LH window intensifies the chance of ovulation prediction for timed insemination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2016.12.002 | DOI Listing |
PLoS One
January 2025
School of Life Science, Inner Mongolia University, Hohhot, PR China.
Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Seed cycling therapy (SCT) involves the consumption of specific seeds during the follicular and luteal phases of the menstrual cycle to help balance reproductive hormones. This study aimed to investigate the effects of SCT on healthy female Wistar albino rats to prevent hormonal imbalances. For SCT, a seed mixture (SM1) consisting of flax, pumpkin, and soybeans (estrogenic seeds) was administered at doses of 5.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699nd West Gao Ke Road, Shanghai, 201204, China.
Purpose: Women with polycystic ovary syndrome (PCOS) show greater heterogeneity in ovarian responses during ovarian stimulation. We aimed to investigate the potential predicting factors among individualized basic parameters that affect poor or hyper ovarian responses in PCOS patients.
Methods: We retrospectively screened 2058 women with PCOS who underwent their first cycle of in vitro fertilization/intracytoplasmic sperm injection.
Scand J Med Sci Sports
January 2025
School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney, Ultimo, Australia.
This study investigated the association of menstrual cycle phase and symptoms with objective and subjective sleep measures from professional footballers before and after matches. Twenty-three non-hormonal contraceptive-using professional footballers (from four clubs) were monitored for up to four menstrual cycles during a domestic league season. Menstrual phases (menstruation, mid-late follicular, luteal) were determined using calendar counting and urinary hormone tests (luteinizing hormone and pregnandiol-3-glucuronide).
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
Background And Purpose: Radiotherapy for brain, head & neck (HN), and skull base (SB) tumors may deliver significant radiation dose to the hypothalamic-pituitary axis (HPA), leading to impaired functioning of this region and hence, to endocrine disorders. The purpose of this systematic review and -analysis is to investigate literature on HP dysfunction after radiation for non-pituitary brain, HN, or SB tumors at adult age, aiming to give insight in the prevalence of HP dysfunction related to radiation dose.
Materials And Methods: Literature search of the PubMed database was performed for HP dysfunction after radiotherapy in adult patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!