Investigation of diverse bacteria in cloud water at Mt. Tai, China.

Sci Total Environ

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans cedex 02, France.

Published: February 2017

Bacteria are abundant in atmospheric water phase with the potential to influence atmospheric processes and human health, yet relatively little information is known about the bacterial characteristics at high altitudes. Here we investigated the bacterial community by high throughput sequencing in 24 cloud water samples collected from September 26 to October 31, at the summit of Mt. Tai (36°15' N, 117°06' E, 1534m a.s.l) in China. Diverse bacterial population were identified and the gram-negative bacteria contributed the majority of total bacteria including Proteobacteria (81.6%) and Bacteroidetes (3.9%), followed by gram-positive bacteria Firmicutes (7.1%) and Actinobacteria (2.3%). These gram-negative taxa mainly inhabited in leaf-surface and cold environments. Meanwhile bacteria involved in the cloud condensation nuclei and ice nuclei formation were observed such as Sphingomonas (6.7%), Pseudomonas (4.1%), and Bacillus (1.1%). In addition, Sphingmonas was more active than that in daytime and participated in the cloud chemistry process. Meanwhile O and SO critically contributed to the variation of bacterial community. It is the first report on the bacterial community structure of cloud water over Asian area. Our results can serve as an important reference for environmental scientists, and biologists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.12.081DOI Listing

Publication Analysis

Top Keywords

cloud water
12
bacterial community
12
bacteria
6
cloud
5
bacterial
5
investigation diverse
4
diverse bacteria
4
bacteria cloud
4
water
4
water tai
4

Similar Publications

Monitoring phycocyanin in global inland waters by remote sensing: Progress and future developments.

Water Res

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.

Cyanobacterial blooms are increasingly becoming major threats to global inland aquatic ecosystems. Phycocyanin (PC), a pigment unique to cyanobacteria, can provide important reference for the study of cyanobacterial blooms warning. New satellite technology and cloud computing platforms have greatly improved research on PC, with the average number of studies examining it having increased from 5 per year before 2018 to 17 per year thereafter.

View Article and Find Full Text PDF

A Review of CNN Applications in Smart Agriculture Using Multimodal Data.

Sensors (Basel)

January 2025

Institut de Recherche en Informatique de Toulouse, IRIT UMR5505 CNRS, 31400 Toulouse, France.

This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency.

View Article and Find Full Text PDF

Dual active site and metal-substrate interface effect endow platinum-ruthenium/molybdenum carbide efficient pH-universal hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, PR China. Electronic address:

Exploring suitable dual active site and metal-substrate interface effect is essential for designing efficient and robust electrocatalysts across a wide pH range for the hydrogen evolution reaction (HER). Herein, alloyed platinum-ruthenium clusters supported on nanosheet-assembled molybdenum carbide microflowers (PtRu/MoC) are reported as efficient pH-universal electrocatalysts for HER. Due to dual active site and metal-substrate interface effect, the optimized PtRu/MoC electrocatalyst exhibits extremely low overpotentials (η) of 9, 19, and 33 mV to deliver 10 mA cm in 0.

View Article and Find Full Text PDF

Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.

View Article and Find Full Text PDF

The hydration mechanism of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a relevant marker of secondary organic aerosol formation from the atmospheric oxidation of α-pinene, has been investigated using the matrix-isolation infrared spectroscopy technique. The experimental results were supported by theoretical calculations. Monomers of MBTCA and heterocomplexes MBTCA-(HO) were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!