The cellulase-mediated degradation of cellulosic materials, which is initiated by endoglucanases by the random cleavage of the glycosidic bonds between glucose units to break long cellulose molecules into shorter ones, represents a major carbon flow in the global carbon cycle. The structure of a typical endoglucanase contains a classical (α/β) barrel fold catalytic domain, a linker region and a cellulose-binding domain. In this study, we found that both the full-length enzyme and the catalytic domain of endoglucanase EGL1 cloned from Penicillium crustosum strain 601 have CMCase and FPase activity. A cellulose-binding assay using green fluorescent protein as a marker further showed that the catalytic domain could also bind the cellulose substrate. The three-dimensional structure of the catalytic domain of EGL1 revealed that this cellulose substrate-binding capacity of the catalytic domain may come from the hydrophobic core formed by aromatic amino acids distributed in or outside the (α/β) barrel fold. A glycine scanning mutagenesis assay further found that the aromatic amino acids at the bottom of the barrel fold and those adjacent to the catalytic site significantly affect the cellulolytic activity and the cellulose binding affinity of the catalytic domain. Thus, it could be speculated that the aromatic amino acids in the bottom of the barrel fold might be the main contributors in the binding capacity of the catalytic domain with the cellulose substrate, and those distributed around the active sites on the top of the enzyme might participate in moving the cellulose substrate to the active site in the barrel fold or releasing the hydrolysis products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2016.11.007DOI Listing

Publication Analysis

Top Keywords

catalytic domain
32
barrel fold
20
cellulose substrate
12
aromatic amino
12
amino acids
12
catalytic
9
penicillium crustosum
8
endoglucanase egl1
8
cellulolytic activity
8
α/β barrel
8

Similar Publications

Exosomal circ_0006896 promotes AML progression via interaction with HDAC1 and restriction of antitumor immunity.

Mol Cancer

January 2025

Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.

Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.

Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.

View Article and Find Full Text PDF

3'-phosphoadenosine 5'-phosphosulfate (PAPS) is synthesized by PAPS synthase (PAPSS) in two steps. In the first step ATP sulfurylase (ATPS) transfers sulfate group onto adenylyl moiety of ATP to form adenosine 5'-phosphosulfate (APS) and PPi. APS-kinase (APSK) then transfers the gamma-phosphoryl from ATP onto 3'-OH of APS to form PAPS and ADP.

View Article and Find Full Text PDF

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

Assignment of the N-terminal domain of mouse cGAS.

Biomol NMR Assign

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.

View Article and Find Full Text PDF

Design, synthesis, in vitro, and in silico studies of 4-fluorocinnamaldehyde based thiosemicarbazones as urease inhibitors.

Sci Rep

January 2025

Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea.

Clinically significant problems such as kidney stones and stomach ulcers are linked to the activation of the urease enzyme. At low pH, this enzyme gives an ideal environment to Helicobacter pylori in the stomach which is the cause of gastric ulcers and peptic ulcers. In recent work, we have developed a library of 4-fluorocinnamaldehyde base thiosemicarbazones and assessed them for their potential against urease enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!