The microbial production of renewable ethylene glycol (EG) has been gaining attention recently due to its growing importance in chemical and polymer industries. EG has been successfully produced biosynthetically from d-xylose through several novel pathways. The first report on EG biosynthesis employed the Dahms pathway in Escherichia coli wherein 71% of the theoretical yield was achieved. This report further improved the EG yield by implementing metabolic engineering strategies. First, d-xylonic acid accumulation was reduced by employing a weak promoter which provided a tighter control over Xdh expression. Second, EG yield was further improved by expressing the YjgB, which was identified as the most suitable aldehyde reductase endogenous to E. coli. Finally, cellular growth, d-xylose consumption, and EG yield were further increased by blocking a competing reaction. The final strain (WTXB) was able to reach up to 98% of the theoretical yield (25% higher as compared to the first study), the highest reported value for EG production from d-xylose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2016.10.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!