Analytic solution of the Ornstein-Zernike relation for inhomogeneous liquids.

J Chem Phys

Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China.

Published: December 2016

The properties of a classical simple liquid are strongly affected by the application of an external potential that supports inhomogeneity. To understand the nature of these property changes, the equilibrium particle distribution functions of the liquid have, typically, been calculated directly using either integral equation or density functional based analyses. In this study, we develop a different approach with a focus on two distribution functions that characterize the inhomogeneous liquid: the pair direct correlation function c(r,r) and the pair correlation function g(r,r). With g(r,r) considered to be an experimental observable, we solve the Ornstein-Zernike equation for the inhomogeneous liquid to obtain c(r,r), using information about the well studied and resolved g(r,r) and c(r,r) for the parent homogeneous () system. In practical cases, where g(r,r) is available from experimental data in a discrete form, the resulting c(r,r) is expressed as an explicit function of g(r,r) in a discrete form. A weaker continuous form of solution is also obtained, in the form of an integral equation with finite integration limits. The result obtained with our formulation is tested against the exact solutions for the correlation and distribution functions of a one-dimensional inhomogeneous hard rod liquid. Following the success of that test, the formalism is extended to higher dimensional systems with explicit consideration of the two-dimensional liquid.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4972020DOI Listing

Publication Analysis

Top Keywords

distribution functions
12
integral equation
8
inhomogeneous liquid
8
correlation function
8
function grr
8
discrete form
8
liquid
6
grr
5
analytic solution
4
solution ornstein-zernike
4

Similar Publications

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Evaluation of drug-drug interaction between rosuvastatin and tacrolimus and the risk of hepatic injury in rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.

Multimorbidity, therapeutic complexity, and polypharmacy, which greatly increases the risk of drug-drug interactions (DDIs) and adverse medical outcomes, have become important and growing challenges in clinical practice. Statins are frequently prescribed to manage post-transplant dyslipidemia and reduce overall cardiovascular risk in solid organ transplant recipients. This study aimed to determine whether rosuvastatin has significant DDIs with tacrolimus (the first-line immunosuppressant) and to evaluate the risk of hepatotoxicity associated with concomitant therapy.

View Article and Find Full Text PDF

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!