Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4972012DOI Listing

Publication Analysis

Top Keywords

density-functional embedding
20
embedding theory
16
covalent systems
16
covalent bonds
12
covalent
8
extended covalent
8
systems cutting
8
cutting covalent
8
cluster covalent
8
embedding
7

Similar Publications

MOFs-derived porous carbon embedded Fe nanoparticles as peroxymonosulfate activator for efficient degradation of organic pollutants.

Environ Res

January 2025

Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China. Electronic address:

Achieving the harmless degradation of organic pollutants remains a challenging task for the advanced oxidation processes. Metal-organic frameworks have emerged in the field of energy and environmental catalysis. Herein, MIL-101(Fe) was employed as the precursor to prepare a porous carbon embedded Fe nanoparticles (Fe@C) via a pyrolytic process under N protection.

View Article and Find Full Text PDF

Anisotropic interactions for continuum modeling of protein-membrane systems.

J Chem Phys

December 2024

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions.

View Article and Find Full Text PDF

Developing highly efficient and cost-competitive electrocatalysts for the hydrogen evolution reaction (HER), which can be applied to hydrogen production by water splitting, is of great significance in the future of the zero-carbon economy. Here, by means of first-principles calculations, we have scrutinized the HER catalytic capacity of single-atom catalysts (SACs) by embedding transition-metal atoms in the C and Mo vacancies of a tetragonal MoC slab, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni and Cu. All the MoC-based SACs exhibit excellent electrical conductivity, which is favorable to charge transfer during HER.

View Article and Find Full Text PDF
Article Synopsis
  • Multi-walled carbon nanotubes (CNT) are embedded with RuPdIrPtAu high entropy alloys (HEA) using pulsed laser irradiation in liquids, resulting in a composite that enhances hydrazine oxidation reactions (HzOR) for improved water electrolysis.
  • HEA particles, sized around 2-5 nm, are effectively dispersed on the CNTs, allowing an optimized variant (HEA/CNT-10) to demonstrate superior performance in oxygen and hydrogen evolution reactions (OER and HER), showing low overpotentials of 30.7 mV for OER and 330 mV for HER.
  • The composite exhibits a lower voltage requirement of 0.1 V for HzOR compared to the 1.56
View Article and Find Full Text PDF

The development of highly stable and strongly active electrode materials for sodium-ion batteries (SIBs) and overall water splitting (OWS) is critical in sustainable energy storage and conversion systems. Here, a new electrode material N-Fe-C@NbCT is introduced, with a layered sandwich structure consisting of N-doping Fe-MOF derived-nanorods (Fe-C) and NbCT MXenes. Specifically, NbCT obtained by etching NbAlC with HF acid is used as the main body to construct the layered sandwich structure with Fe-C as the filler.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!