The treatment of brain disorders is greatly hindered by the presence of the blood-brain barrier, which restricts the overwhelming majority of small molecules from entering the brain. A novel approach by which to overcome this barrier is to target receptor mediated transport mechanisms present on the endothelial cell membranes. Therefore, we fused an aptamer that binds to epithelial cell adhesion molecule-expressing cancer cells to an aptamer targeting the transferrin receptor. This generated a proof of concept bifunctional aptamer that can overcome the blood-brain barrier and potentially specifically target brain disorders. The initial fusion of the two sequences enhanced the binding affinity of both aptamers while maintaining specificity. Additionally, mutations were introduced into both binding loops to determine their effect on aptamer specificity. The ability of the aptamer to transcytose the blood-brain barrier was then confirmed in vivo following a 1 nmol injection. This study has shown that through the fusion of two aptamer sequences, a bifunctional aptamer can be generated that has the potential to be developed for the specific treatment of brain disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.6b00369 | DOI Listing |
Anal Chem
January 2025
Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.
View Article and Find Full Text PDFTalanta
November 2024
Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 201203, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China. Electronic address:
Cervical cancer (CC) remains a critical public health issue, highlighting the importance of early detection. However, current methods such as cytological and HPV testing face challenges of invasiveness and low patient compliance. Exosomes, emerging as crucial in cancer diagnosis, offer promise due to their noninvasive, highly specificity, and abundant biomarkers.
View Article and Find Full Text PDFMolecules
November 2024
The Laboratory of Biotechnology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
Oncolytic virotherapy is a promising approach for cancer treatment. However, when introduced into the body, the virus provokes the production of virus-neutralizing antibodies, which can reduce its antitumor effect. To shield viruses from the immune system, aptamers that can cover the membrane of the viral particle are used.
View Article and Find Full Text PDFAnal Chim Acta
December 2024
Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China. Electronic address:
Background: Bisphenol A (BPA) has been identified as an endocrine disruptor with numerous detrimental effects on human health. There is an urgent need to develop fluorescence/colorimetric dual-mode sensing approaches with expanded detection linear range, increased accuracy, and enhanced application flexibility for BPA detection. The utilization of fluorescence and colorimetric signals in point-of-care applications and real-time sensitive sensing further highlights the significance of developing novel and efficient fluorescence/colorimetric dual-mode sensing platform with high-efficiency probes.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!