Chloride channels represent ubiquitously expressed proteins that regulate fundamental cellular processes including membrane potential, maintenance of intracellular pH, and regulation of cell volume. However, mechanisms to modulate this large family of ion channels have remained elusive to date. This large chloride channel family does not appear to operate with selectivity similar to the sodium and potassium channels. These unique channels appear to be bi-directional cotransporters of two or more different molecules or ions across a bilayer phospholipid membrane. Here we show how 3 amperes of direct current from a device that generates an electromagnetic field in a 3 mM hypotonic saline solution leads to a dielectrophoretic disassociation of the chloride ion from its chloro-metabolites transforming it into a polymorphic diamagnetically disassociated bio-chloride (bCl-). This field treated aqueous solution appears to continue to induce a magnetic moment change in solution for some hours when no longer under the influence of the direct current; for when this field influenced solution is used to reconstitute growth media of human breast carcinoma (MDA-MB-231) and human breast epithelial (MCF-10A) cells in vitro, significant changes in chloride ion channel expression, membrane potential, cell volume, and a massive transcriptional reprogramming of 2,468 genes expressions by Human Genome U133 Plus 2.0 Gene Chip Array (Affymetrix) analyses occur. We will highlight how the strong changes in chloride ion channel expression and cell physiology could be intricately linked to enhanced diamagnetic anisotropy in cell membranes that occur under the influence of this disassociated polymorphic bCl-.
Download full-text PDF |
Source |
---|
J Bone Joint Surg Am
January 2025
Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY.
Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).
Methods: MSSA and E.
Nanotoxicology
January 2025
Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!