Chloride channels represent ubiquitously expressed proteins that regulate fundamental cellular processes including membrane potential, maintenance of intracellular pH, and regulation of cell volume. However, mechanisms to modulate this large family of ion channels have remained elusive to date. This large chloride channel family does not appear to operate with selectivity similar to the sodium and potassium channels. These unique channels appear to be bi-directional cotransporters of two or more different molecules or ions across a bilayer phospholipid membrane. Here we show how 3 amperes of direct current from a device that generates an electromagnetic field in a 3 mM hypotonic saline solution leads to a dielectrophoretic disassociation of the chloride ion from its chloro-metabolites transforming it into a polymorphic diamagnetically disassociated bio-chloride (bCl-). This field treated aqueous solution appears to continue to induce a magnetic moment change in solution for some hours when no longer under the influence of the direct current; for when this field influenced solution is used to reconstitute growth media of human breast carcinoma (MDA-MB-231) and human breast epithelial (MCF-10A) cells in vitro, significant changes in chloride ion channel expression, membrane potential, cell volume, and a massive transcriptional reprogramming of 2,468 genes expressions by Human Genome U133 Plus 2.0 Gene Chip Array (Affymetrix) analyses occur. We will highlight how the strong changes in chloride ion channel expression and cell physiology could be intricately linked to enhanced diamagnetic anisotropy in cell membranes that occur under the influence of this disassociated polymorphic bCl-.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chloride ion
12
dielectrophoretic disassociation
8
disassociation chloride
8
diamagnetic anisotropy
8
anisotropy cell
8
cell membranes
8
membrane potential
8
cell volume
8
direct current
8
human breast
8

Similar Publications

Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).

Methods: MSSA and E.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF

Chloride intracellular channel CLIC3 mediates fibroblast cellular senescence by interacting with ERK7.

Commun Biol

January 2025

Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.

Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.

View Article and Find Full Text PDF

Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!