Controllable reduced black titania with enhanced photoelectrochemical water splitting performance.

Dalton Trans

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China. and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.

Published: January 2017

Black titania prepared by metal-reduction methods is systematically studied and found the best controllable Mg-reduction method. Colored titania products from white, light blue, dark blue, to black were obtained with a crystalline/amorphous core-shell structure. The black titania shows a five times higher H production rate in photoelectrochemical (PEC) water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt04060hDOI Listing

Publication Analysis

Top Keywords

black titania
12
water splitting
8
controllable reduced
4
black
4
reduced black
4
titania
4
titania enhanced
4
enhanced photoelectrochemical
4
photoelectrochemical water
4
splitting performance
4

Similar Publications

Proton-coupled electron transfer (PCET) reactions are fundamental to energy storage and conversion processes. By coupling electrons with protons, the net charge neutrality is retained, preventing electrode decomposition due to charge imbalance. PCET reactions with equimolar amounts of protons and electrons can be considered as a net H-atom transfer (HAT) reaction.

View Article and Find Full Text PDF

Enhanced photocatalytic performance and a mechanistic study of novel black phosphorus/graphene/TiO composite membrane for o-chlorophenol removal.

Environ Res

December 2024

Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The heterogeneous catalysis of the composite membrane not only exerts the synergistic effect of different materials but also enable the recyclable use of catalysts, making it an ideal and sustainable strategy for removing pollutants in water. In this study, a novel black phosphorus/graphene/titanium dioxide (BP/GR/TiO) membrane was successfully prepared through the sol-gel method. The composite membrane not only overcame the instability of black phosphorus and the rapid recombination of e/h pairs in titanium dioxide but also synergized with GR to produce a new reactive oxygen species (ROS), singlet oxygen (O), with a longer lifetime and migration distance.

View Article and Find Full Text PDF

Purpose: To investigate the impact of manual toothbrush usage duration and associated wear on cleaning performance in a tooth model with fixed orthodontic appliances.

Materials And Methods: Black resin teeth with attached brackets were coated with a white layer of titanium dioxide and subjected to brushing using a brushing machine. Two distinct brushing motions, horizontal and circular, were tested.

View Article and Find Full Text PDF

Despite significant progress in the catalytic hydrogenation of nitriles, the persistent challenge of requiring additives to prevent condensation byproducts and achieve selectivity toward primary amines demands urgent attention. In this work, we present an integrated approach utilizing a ligand-bridged Ni-Ti bimetallic complex as a precursor to tune Ni-NiO-NiO(OH) heterojunctions and phases of black titania (bTiO) by controlling pyrolytic conditions. This tailored phase distribution and charge dynamics across heterojunctions create an effective balance of acidic and basic sites, enabling the direct hydrogenation of nitriles to primary amines without the need for additives.

View Article and Find Full Text PDF

Understanding the biokinetics of nanoparticles will support the identification of target organs for toxicological endpoints. We investigated the biokinetics of poorly soluble nanomaterials carbon black, multi-walled carbon nanotubes (MWCNT), cerium oxide (CeO), titanium dioxide (TiO), crystalline silica (SiO) in inhalation studies in rodents (the soluble amorphous silica was also included). By reviewing research papers on the inhalation of these substances, we collected physico-chemical data and elemental distribution to organs, urine, and feces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!