Correction: Visible-light controlled catalytic CuO-Au micromotors.

Nanoscale

Departments of Chemistry, Biochemistry and Molecular Biology, and Physics, The Pennsylvania State University, University Park, PA 16802, USA.

Published: January 2017

Correction for 'Visible-light controlled catalytic CuO-Au micromotors' by Dekai Zhou, et al., Nanoscale, 2017, DOI: 10.1039/c6nr08088j.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr90264bDOI Listing

Publication Analysis

Top Keywords

controlled catalytic
8
catalytic cuo-au
8
correction visible-light
4
visible-light controlled
4
cuo-au micromotors
4
micromotors correction
4
correction 'visible-light
4
'visible-light controlled
4
cuo-au micromotors'
4
micromotors' dekai
4

Similar Publications

The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.

View Article and Find Full Text PDF

A stimuli-responsive drug delivery system based on konjac glucomannan, carboxymethyl chitosan and mesoporous polydopamine nanoparticles.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Electronic address:

A stimuli-responsive drug delivery system is developed for controlled delivery of curcumin (Cur) and chemo-photothermal therapy of breast cancer (BC). Cur is first loaded into mesoporous polydopamine nanoparticles (mPDA NPs) by π-π stacking, and then the Cur loaded mPDA NPs (mPDA NPs@Cur) are encapsulated in the hydrogels prepared through the crosslinking of oxidized konjac glucomannan (oxKGM) and carboxymethyl chitosan (CMCS). Owing to the pH-sensitivity of the hydrogels and the outstanding photothermal conversion capability of mPDA NPs, the release of Cur from the hydrogels can be greatly accelerated in acidic media upon near infrared (NIR) irradiation.

View Article and Find Full Text PDF

An overview of additive manufacturing strategies of enzyme-immobilized nanomaterials with application incatalysis and biomedicine.

Int J Biol Macromol

December 2024

School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea. Electronic address:

Meticulous and bespoke fabrication of structural materials with simple yet innovative outlines along with on-demand availability is the imperative aspiration for numerous fields. The alliance between nanotechnology and enzymes has led to the establishment of an inimitable and proficient class of materials. With the advancement in the field of additive manufacturing, the fabrication of some complex biological architects is achievable with similitude to the instinctive microenvironment of the biological tissue.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!