Synthesis and fluorescence properties of dioxa-, dithia-, and diselena-[3.3](1,3)pyrenophanes.

Photochem Photobiol Sci

Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.

Published: February 2017

[3.3](1,3)Pyrenophanes tethered by oxygen (1), sulfur (2) and selenium (3) atoms were synthesized and the structural and physical properties of these substances were determined. The absorption maxima of the [3.3](1,3)pyrenophanes were observed to shift to longer wavelengths in the order of 1 < 2 < 3. The fluorescence spectra of 1-3 contained both monomer and intramolecular excimer emissions, which correspond to anti and syn conformers, respectively. The ratios of the intensities of intramolecular excimer to monomer emission were observed to increase with the increasing solvent polarity. The intensity ratios also depend on temperature. For example, an increase in temperature results in an increase of the ratio of intensities of the intramolecular excimer to monomer fluorescence of 2. The results of H NMR spectroscopic investigations show that resonances for the methylene and aromatic hydrogens in these substances coalesce at low temperatures with coalescence temperatures (T) that decrease in the order of 1 > 2 > 3. The results of geometry optimization studies using B3LYP/6-31G(d,p) demonstrate that the syn conformers of 1-3 have lower enthalpies than their anti counterparts, but the syn conformer of 1 and the anti conformers of 2-3 are entropically more favorable. These findings suggest that an equilibrium exists between the syn and anti conformers of the [3.3](1,3)pyrenophanes and that the conformer ratios are dependent on both the solvent polarity and temperature in a manner that can be explained in terms of a combination of enthalpies, dipole moments and entropies. The combined results show that the pyrenophanes are interesting substances that emit different fluorescence colors in a manner that is controlled by the surrounding environment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6pp00402dDOI Listing

Publication Analysis

Top Keywords

intramolecular excimer
12
syn conformers
8
intensities intramolecular
8
excimer monomer
8
solvent polarity
8
anti conformers
8
synthesis fluorescence
4
fluorescence properties
4
properties dioxa-
4
dioxa- dithia-
4

Similar Publications

Deep eutectic solvents (DESs) have emerged as solubilizing media of intense interest due partly to their easily tailorable physicochemical properties. Extensive H-bonding between the constituents in a two-constituent system is the major driving force for the formation of the DES. Addition of ethanolamine (MEA), a compound having H-bonding capabilities, to the DESs composed of a terpene [menthol (Men) or thymol (Thy)] and a fatty acid [-decanoic acid (DA)] results in an unprecedented increase in dynamic viscosity due to the extensive rearrangement in the H-bonding network and other interactions within the system, while the liquid mixture still behaves as a Newtonian fluid.

View Article and Find Full Text PDF

Transition Metals Coordination by Bis-imidazole-calix[4]arene Ligands with and Without Pyrene Units Grafted at the Large Rim.

Int J Mol Sci

October 2024

Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia.

Herein, the presented results show that previously studied DNA/RNA-interacting bis-imidazole-calix[4]arene systems can, in aqueous solutions, efficiently bind a series of biorelevant transition metal cations by coordination with the two imidazole arms at the small rim of their macrocyclic basket. The SCXRD and NMR results structurally characterised the complexes formed by referent bis-imidazole-calix[4]arene with Cu and Zn. In solid-state (crystal), the bis-anilino derivative/Cu complex, only upon exposure to the air, undergoes intramolecular dehydrogenative coupling of two neighbouring aniline units, yielding an azo bridge at the large rim of the calix[4]arene basket.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF)-based electroluminescence (EL) devices adopting a host/guest strategy in their emitting layer (EML) are capable of realizing high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing a donor and/or an acceptor are subject to donor-acceptor (D-A) interactions. In addition, electron delocalization between neighboring emitter molecules could form different species of aggregates.

View Article and Find Full Text PDF

Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPO) are small synthetic modular peptidomimetics with promising antimicrobial activity. The LEGO-LPPO mechanism of antibacterial action has been determined to be the depolarization and disruption of bacterial membranes. Their modular nature is advantageous for fine tuning their biological properties.

View Article and Find Full Text PDF

The efficient triplet states formation of Se-modified PDI dimers and tetramers in solvents.

Phys Chem Chem Phys

November 2024

School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.

The triplet excited states of molecules play an important role in photophysical processes, which has attracted great research interest. Perylene diimide (PDI) is a widely studied material closely associated with the generation of triplet states, and it is highly anticipated to become an electron acceptor material for improving photovoltaic conversion efficiency. In this work, we prepared dimers and tetramers composed of selenium-modified PDI-C5 ('-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!