A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multifunctionalization of Poly(vinylidene fluoride)/Reactive Copolymer Blend Membranes for Broad Spectrum Applications. | LitMetric

Multifunctionalization of Poly(vinylidene fluoride)/Reactive Copolymer Blend Membranes for Broad Spectrum Applications.

ACS Appl Mater Interfaces

Reverse Osmosis Membrane Division, ‡AcSIR, and §Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India.

Published: January 2017

Simultaneous immobilization and cross-linking of antifouling/low toxic polymers, e.g., poly(ethylenimine) (PEI), dextran (Dex), agarose (Agr), poly(ethylene glycol) (PEG), PEI-Dex, and PEI-PEG conjugates, and stimuli-responsive copolymers on a porous membrane surface in mild reaction conditions is desirable for the enhancement of hydrophilicity, antifouling character, cytocompatibility, and inducing stimuli-responsive behavior. Grafting to technique is required since the precursors of most of these macromolecules are not amenable to surface-initiated polymerization. In this work, we report a versatile process for the simultaneous immobilization and cross-linking of a library of macromolecules on and into the blend membrane (PVDF-blend) of poly(vinylidene fluoride) and poly(methyl methacrylate)-co-poly(chloromethylstyrene). Sequential nucleophilic substitution reaction between activated halide moieties of the copolymer and amine groups of different macromolecules readily provided series of modified membranes. These membranes exhibited antifouling property superior to that of the unmodified membrane. The effectiveness of this technique has been demonstrated by the immobilization of pH or both pH- and temperature-responsive copolymer on PVDF-blend membrane for responsive separation of poly(ethylene oxide) and bovine serum albumin. Silver nanoparticles were also anchored on the select modified membranes surfaces for the enhancement of antibiofouling property. Our approach is useful to obtain verities of functional membranes and selection of membrane for a particular application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b13235DOI Listing

Publication Analysis

Top Keywords

simultaneous immobilization
8
immobilization cross-linking
8
modified membranes
8
membranes
5
membrane
5
multifunctionalization polyvinylidene
4
polyvinylidene fluoride/reactive
4
fluoride/reactive copolymer
4
copolymer blend
4
blend membranes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!