Cat's claw is a large woody vine with hook-like thorns, and has been traditionally used to treat inflammatory disorders in South and Central America. In this study, a rapid, validated high-performance liquid chromatographic (HPLC) method using a silica monolithic column was developed for the simultaneous determination of oxindole alkaloids, namely rhynchophylline, pteropodine, isomitraphylline and isopteropodine, in cat's claw. The ionic liquid-based microwave-assisted extraction (ILMAE), considered as an environmentally friendly and powerful tool, was first applied in the extraction of oxindole alkaloids. To optimize the HPLC method, the stationary phases, pH values of mobile phase and flow rates were investigated. The validated HPLC method using a Monolithic RP column (100 × 4.6 mm) enables these analytes to be separated almost twice as fast as with a conventional particulate column (~16 vs ~30 min) with limits of quantification and detection of 0.5 and 0.15 μg/mL, respectively. The ILMAE conditions were optimized by the Taguchi orthogonal array design. In comparison with conventional water boiling extraction, ILMAE offers almost four times higher yields within an extremely short extraction time. The developed HPLC coupled with ILMAE method could be efficient and practical for rapid determination of oxindole alkaloids in cat's claw.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.3925 | DOI Listing |
ChemMedChem
December 2024
IICT CSIR: Indian Institute of Chemical Technology, Department of Applied Biology, Hyderabad, INDIA.
An efficient and concise synthesis of highly functionalized bridged coumarins has been developed through a diastereoselective double Michael addition reaction of p-quinols with various 4-hydroxy coumarins under catalyst-free conditions in H2O-DMSO (8:2). The method has been applied to oxindoles for the synthesis of a variety of bridged-oxindoles and bridged-spiroxindoles in presence of a DABCO base using H2O-EtOH (8:2) as solvent medium. The strategy is simple, highly atom economical as there is no by-product and environmentally benign (E-factor = 0.
View Article and Find Full Text PDFMolecules
November 2024
LAQV-REQUIMTE, Institute for Research and Advanced Studies, University of Évora, Rua Romão Ramalho, 59, 7000-641 Évora, Portugal.
The 3-component Passerini reaction (3CPR), discovered little more than 100 years ago, has been demonstrated in the last few decades to be a valuable tool for accessing structural diversity and complexity, essential topics to consider in drug discovery programs. Focusing on accessing a fine-tuned family of α-acyloxyamide-oxindole hybrids, we underline herein our latest insights regarding the use of this mild reaction approach to obtain promising anticancer agents. Cheap and commercially available isatin was used as starting material.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
In this study, we investigated a novel anti-cancer drug design approach by revisiting diclofenac-based carborane-substituted prodrugs. The redesigned compounds combine the robust carborane scaffold with the oxindole framework, resulting in four carborane-derivatized oxindoles and a unique zwitterionic amidine featuring a nido-cluster. We tested the anti-cancer potential of these prodrugs against murine colon adenocarcinoma (MC38), human colorectal carcinoma (HCT116), and human colorectal adenocarcinoma (HT29).
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
The radical cascade reaction of α-halogenated anilides represents an efficient approach for synthesizing 3,3-oxindoles. However, most methods have focused on α-bromoanilides, with limited utilization of the more stable and readily available α-chloroanilides. In addition, the transition-metal-free preparation of 3,3-oxindoles has been far less explored.
View Article and Find Full Text PDFOrg Lett
December 2024
Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
A regiodivergent strategy for the asymmetric diversity-oriented synthesis of spirooxindoles via organocatalytic cascade reactions is developed. Two regioselective pathways can be precisely controlled with different aminocatalysts in the reaction of 2-hydroxycinnamaldehydes and β,β-disubstituted 3-alkylidene oxindoles. The cascade vinylogous Michael/oxa-Michael/aldol reactions gave spiro-bridged oxindoles bearing two adjacent quaternary stereocenters, while the cascade oxa-Michael/Michael reactions gave spirooxindoles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!