We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit-due to the VC that breaks Newton's third law-various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving-locally polar-files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.117.248001 | DOI Listing |
Clin Exp Pharmacol Physiol
March 2025
School of Physical Education, Hangzhou Normal University, Hangzhou, China.
Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI, United States.
Background: The mental health crisis among college students intensified amid the COVID-19 pandemic, suggesting an urgent need for innovative solutions to support them. Previous efforts to address mental health concerns have been constrained, often due to the underuse or shortage of services. Mobile health (mHealth) technology holds significant potential for providing resilience-building support and enhancing access to mental health care.
View Article and Find Full Text PDFPlast Reconstr Surg
December 2024
Copenhagen University Hospital, Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark.
Background: Capsular contracture is a frequent and severe complication following breast implant surgery. Although several theories on the pathophysiology exist, the exact molecular mechanisms remain unclear. This study aimed to identify the specific genes, signaling pathways, and immune cells associated with capsular contracture.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.
View Article and Find Full Text PDFJ Immunother
October 2024
Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China.
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!