Catalytic enantioselective addition of Grignard reagents to aromatic silyl ketimines.

Nat Commun

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Published: December 2016

α-Chiral amines are of significant importance in medicinal chemistry, asymmetric synthesis and material science, but methods for their efficient synthesis are scarce. In particular, the synthesis of α-chiral amines with the challenging tetrasubstituted carbon stereocentre is a long-standing problem and catalytic asymmetric additions of organometallic reagents to ketimines that would give direct access to these molecules are underdeveloped. Here we report a highly enantioselective catalytic synthesis of N-sulfonyl protected α-chiral silyl amines via the addition of inexpensive, easy to handle and readily available Grignard reagents to silyl ketimines. The key to this success was our ability to suppress any unselective background addition reactions and side reduction pathway, through the identification of an inexpensive, chiral Cu-complex as the catalytically active structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5196062PMC
http://dx.doi.org/10.1038/ncomms13780DOI Listing

Publication Analysis

Top Keywords

grignard reagents
8
silyl ketimines
8
α-chiral amines
8
catalytic enantioselective
4
enantioselective addition
4
addition grignard
4
reagents aromatic
4
aromatic silyl
4
ketimines α-chiral
4
amines medicinal
4

Similar Publications

-functionalization of pillar[]arenes has been a formidable challenge, partially due to the fragility of their macrocyclic skeletons. In this concise report, we describe a facile synthetic method for monoarylation/alkylation at the position to the oxime functionality in pillar[4]arene[1]benzoquinone monoxime () via addition of Grignard reagents. The described method enables the creation of various mono--alkyl/aryl-substituted pillar[5]arene derivatives that were previously inaccessible.

View Article and Find Full Text PDF

Stereoretentive Conversion to -Glycosides from -Glycosides via Ligand-Coupling on Sulfur(IV).

Org Lett

January 2025

The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.

A novel strategy is reported for the stereoselective synthesis of C(sp)-C(sp) -glycosides, which converts heteroaryl -glycosides into heteroaryl -glycosides with retention of configuration through a sequential process involving oxidation and Grignard reagent attack. The new method involves the generation of a S(IV) intermediate, followed by ligand coupling of the glycosyl and heteroaryl groups to yield heteroaryl -glycosides. The diverse heteroaryl -glycosides were achieved with good efficiency.

View Article and Find Full Text PDF

Heterogeneous copper-catalyzed Grignard reactions with allylic substrates.

Chem Commun (Camb)

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden.

Herein, we present a highly efficient allylic substitution of carbonates with Grignard reagents using a reusable cellulose-supported nanocopper catalyst. This approach highlights the first instance of heterogeneous catalysis for the cross-coupling of allylic alcohol substrates with Grignard reagents. The method features high yields, excellent regioselectivity, and complete chirality transfer.

View Article and Find Full Text PDF

Although numerous transition-metal catalyzed cross-coupling reactions of alkenyl electrophiles with a sulfur(VI) leaving group, mainly alkenyl sulfones, have been developed, most rely heavily on highly nucleophilic Grignard reagents, and the use of organoboron reagents remains challenging. We report herein facile preparation and the following Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of alkenyl sulfoximine, a monoaza analog of sulfone. The condensation of alkyl sulfoximine with aldehydes, developed in this study, makes alkenyl sulfoximines more readily available.

View Article and Find Full Text PDF

Herein, we report a method for the regioselective alkylation and phosphonation of quinoline C4-H via a BH-mediated nucleophilic addition of Turbo Grignard reagents and phosphine oxide anions to quinolines bearing different substituents, affording the 4-alkyl and 4-phosphoryl quinolines and tetrahydroquinolines after one-pot oxidation or reduction. The results indicate that coordination of the BH group can activate substrates toward a potential 1,4-dearomative addition and subtly control the regioselectivity by preventing the 1,2-dearomative addition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!