Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films.

Nanotechnology

Department of Industrial Engineering (DIIn), University of Salerno, Via G. Paolo II 132, 84084 Fisciano (SA), Italy.

Published: February 2017

In this work the preparation of flexible polymeric films with controlled electrical conductivity, light transmission and surface wettability is reported. A drop casted graphene oxide thin film is photo-reduced at different levels by UV light or laser irradiation. Optical microscopy, IR spectroscopy, electrical characterization, Raman spectroscopy and static water contact angle measurements are used in order to characterize the effects of the various reduction methods. Correlations between the optical, electrical and structural properties are reported and compared to previous literature results. These correlations provide a useful tool for independently tuning the properties of these films for specific applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/28/5/054003DOI Listing

Publication Analysis

Top Keywords

surface wettability
8
graphene oxide
8
oxide thin
8
light irradiation
4
irradiation tuning
4
tuning surface
4
wettability optical
4
optical electric
4
electric properties
4
properties graphene
4

Similar Publications

Background/purpose: Early osseointegration of titanium (Ti) dental implants relies on the surface topography. Surface modification of Ti seeks to enhance bone regeneration around implants. Acid etching is the simple, less technique sensitive and cost-effective technique for surface treatment.

View Article and Find Full Text PDF

Background/purpose: studies are essential for understanding cellular responses, but traditional culture systems often neglect the three-dimensional (3D) structure of real implants, leading to limitations in cellular recruitment and behavior largely governed by gravity. The objective of this study was to pioneer a novel 3D dynamic osteoblastic culture system for assessing the biological capabilities of dental implants in a more clinically and physiologically relevant manner.

Materials And Methods: Rat bone marrow-derived osteoblasts were cultured in a 24-well dish with a vertically positioned dental implant.

View Article and Find Full Text PDF

The aim of the study was to investigate the influence of the nitrocarburizing process carried out in low temperature plasma using the active screen at 440 °C on the structure and physicochemical properties of the 316LVM steel. In the paper, results of micro-structure and phase composition of the layers, roughness, and surface wettability, potentiodynamic pitting corrosion resistance, penetration of ions into the solution as well as biological tests were present. The studies were conducted for the samples of both mechanically polished and nitrocarburized surfaces, after sterilization, and exposure to the Ringer's solution.

View Article and Find Full Text PDF

Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces.

View Article and Find Full Text PDF

The oil film formed by the adhesion of crude oil to the resin-asphalt adsorption layer is difficult to peel off due to the strong oil-solid interaction, which severely limits further improvements in oil recovery. Although conventional compound oil displacement systems can effectively reduce oil-water interfacial tension, facilitate oil droplet deformation, and alleviate the Jamin effect, they are insufficient in controlling the wettability of oleophilic rock surfaces. In this paper, sodium nonylphenol polyoxyethylene ether sulfate (NPES) and sodium lauric acid ethanolamine sulfonate (HLDEA) were compounded to construct an efficient oil displacement system that simultaneously achieves wettability control of lipophilic surfaces and ultralow oil-water interfacial tension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!