Conserved residues in Ycf54 are required for protochlorophyllide formation in sp. PCC 6803.

Biochem J

Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.

Published: February 2017

Chlorophylls (Chls) are modified tetrapyrrole molecules, essential for photosynthesis. These pigments possess an isocyclic E ring formed by the Mg-protoporphyrin IX monomethylester cyclase (MgPME-cyclase). We assessed the effects of altering seven highly conserved residues within Ycf54, which is required for MgPME-cyclase activity in the cyanobacterium strains harbouring the Ycf54 alterations D39A, F40A and R82A were blocked to varying degrees at the MgPME-cyclase step, whereas the A9G mutation reduced Ycf54 levels by ∼75%. Wild-type (WT) levels of the cyclase subunit CycI are present in strains with D39A and F40A, but these strains have lowered cellular Chl and photosystem accumulation. CycI is reduced by ∼50% in A9G and R82A, but A9G has no perturbations in Chl or photosystem accumulation, whilst R82A contains very little Chl and few photosystems. When FLAG tagged and used as bait in pulldown experiments, the three mutants D39A, F40A and R82A were unable to interact with the MgPME-cyclase component CycI, whereas A9G pulled down a similar level of CycI as WT Ycf54. These observations suggest that a stable interaction between CycI and Ycf54 is required for unimpeded Pchlide biosynthesis. Crystal structures of the WT, A9G and R82A Ycf54 proteins were solved and analysed to investigate the structural effects of these mutations. A loss of the local hydrogen bonding network and a reversal in the surface charge surrounding residue R82 are probably responsible for the functional differences observed in the R82A mutation. We conclude that the Ycf54 protein must form a stable interaction with CycI to promote optimal Pchlide biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5317394PMC
http://dx.doi.org/10.1042/BCJ20161002DOI Listing

Publication Analysis

Top Keywords

ycf54 required
12
d39a f40a
12
conserved residues
8
ycf54
8
residues ycf54
8
f40a r82a
8
chl photosystem
8
photosystem accumulation
8
a9g r82a
8
cyci ycf54
8

Similar Publications

Chlorophyll is the light-harvesting molecule central to the process of photosynthesis. Chlorophyll is synthesized through 15 enzymatic steps. Most of the reactions have been characterized using recombinant proteins.

View Article and Find Full Text PDF

The unique isocyclic E ring of chlorophylls contributes to their role as light-absorbing pigments in photosynthesis. The formation of the E ring is catalyzed by the Mg-protoporphyrin IX monomethyl ester cyclase, and the O2-dependent cyclase in prokaryotes consists of a diiron protein AcsF, augmented in cyanobacteria by an auxiliary subunit Ycf54. Here, we establish the composition of plant and algal cyclases, by demonstrating the in vivo heterologous activity of O2-dependent cyclases from the green alga Chlamydomonas reinhardtii and the model plant Arabidopsis thaliana in the anoxygenic photosynthetic bacterium Rubrivivax gelatinosus and in the non-photosynthetic bacterium Escherichia coli.

View Article and Find Full Text PDF

Chlorophyll is synthesized from activated glutamate in the tetrapyrrole biosynthesis pathway through at least 20 different enzymatic reactions. Among these, the MgProto monomethylester (MgProtoME) cyclase catalyzes the formation of a fifth isocyclic ring to tetrapyrroles to form protochlorophyllide. The enzyme consists of two proteins.

View Article and Find Full Text PDF

Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis.

Proc Natl Acad Sci U S A

June 2017

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.

The biosynthesis of (bacterio)chlorophyll pigments is among the most productive biological pathways on Earth. Photosynthesis relies on these modified tetrapyrroles for the capture of solar radiation and its conversion to chemical energy. (Bacterio)chlorophylls have an isocyclic fifth ring, the formation of which has remained enigmatic for more than 60 y.

View Article and Find Full Text PDF

Conserved residues in Ycf54 are required for protochlorophyllide formation in sp. PCC 6803.

Biochem J

February 2017

Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.

Chlorophylls (Chls) are modified tetrapyrrole molecules, essential for photosynthesis. These pigments possess an isocyclic E ring formed by the Mg-protoporphyrin IX monomethylester cyclase (MgPME-cyclase). We assessed the effects of altering seven highly conserved residues within Ycf54, which is required for MgPME-cyclase activity in the cyanobacterium strains harbouring the Ycf54 alterations D39A, F40A and R82A were blocked to varying degrees at the MgPME-cyclase step, whereas the A9G mutation reduced Ycf54 levels by ∼75%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!