The Amur ide (Leuciscus waleckii) is a cyprinid fish that is widely distributed in Northeast Asia. The Lake Dali Nur population inhabits one of the most extreme aquatic environments on Earth, with an alkalinity up to 50 mmol/L (pH 9.6), thus providing an exceptional model with which to characterize the mechanisms of genomic evolution underlying adaptation to extreme environments. Here, we developed the reference genome assembly for L. waleckii from Lake Dali Nur. Intriguingly, we identified unusual expanded long terminal repeats (LTRs) with higher nucleotide substitution rates than in many other teleosts, suggesting their more recent insertion into the L. waleckii genome. We also identified expansions in genes encoding egg coat proteins and natriuretic peptide receptors, possibly underlying the adaptation to extreme environmental stress. We further sequenced the genomes of 10 additional individuals from freshwater and 18 from Lake Dali Nur populations, and we detected a total of 7.6 million SNPs from both populations. In a genome scan and comparison of these two populations, we identified a set of genomic regions under selective sweeps that harbor genes involved in ion homoeostasis, acid-base regulation, unfolded protein response, reactive oxygen species elimination, and urea excretion. Our findings provide comprehensive insight into the genomic mechanisms of teleost fish that underlie their adaptation to extreme alkaline environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854124 | PMC |
http://dx.doi.org/10.1093/molbev/msw230 | DOI Listing |
Environ Sci Technol
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
The extensive use and longevity of nylon plastics pose substantial challenges for plastic management, recycling, and pollution control. Depolymerization and monomer recycling are potential solutions for valorizing waste plastics, but they often rely on complex and costly catalysts. Additionally, various additives in nylon plastics can negatively impact the catalyst efficiency.
View Article and Find Full Text PDFWater Res
March 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, PR China; Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, 671000, PR China. Electronic address:
Global warming has intensified the distinction between dry and wet seasons in monsoonal climates. The synergistic effect of high temperatures and rainfall during the wet season promotes the release of endogenous nitrogen (N) and eutrophication within lake ecosystems. However, the seasonal variations in sediments N speciation and bioavailability, and their intrinsic connection to release potential, remain unclear.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China; School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China.
Sci Total Environ
December 2024
School of Engineering, Dali University, Yunnan 671003, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671006, China.; Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Yunnan 671003, China. Electronic address:
Ennearthron acuticornum sp. nov. and Ennearthron jizushanense sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!