The negative regulator of Rho family GTPases, p190A RhoGAP, is one of six mammalian proteins harboring so-called FF motifs. To explore the function of these and other p190A segments, we identified interacting proteins by tandem mass spectrometry. Here we report that endogenous human p190A, but not its 50% identical p190B paralog, associates with all 13 eIF3 subunits and several other translational preinitiation factors. The interaction involves the first FF motif of p190A and the winged helix/PCI domain of eIF3A, is enhanced by serum stimulation and reduced by phosphatase treatment. The p190A/eIF3A interaction is unaffected by mutating phosphorylated p190A-Tyr, but disrupted by a S296A mutation, targeting the only other known phosphorylated residue in the first FF domain. The p190A-eIF3 complex is distinct from eIF3 complexes containing S6K1 or mammalian target of rapamycin (mTOR), and appears to represent an incomplete preinitiation complex lacking several subunits. Based on these findings we propose that p190A may affect protein translation by controlling the assembly of functional preinitiation complexes. Whether such a role helps to explain why, unique among the large family of RhoGAPs, p190A exhibits a significantly increased mutation rate in cancer remains to be determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314166 | PMC |
http://dx.doi.org/10.1074/jbc.M116.769216 | DOI Listing |
Biomol NMR Assign
December 2024
Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
The Rho GTPase (Ras homolog GTPases) system is a crucial signal transducer that regulates various cellular processes, including cell cycle and migration, genetic transcription, and apoptosis. In this study, we investigated the unfolded state of the first FF domain (FF1) of P190A RhoGAP, which features four tandem FF domains. For signal transduction, FF1 is phosphorylated at tyrosine 308 (Y308), which is buried in the hydrophobic core and is inaccessible to kinases in the folded domain.
View Article and Find Full Text PDFDevelopment
March 2024
Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada.
The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice.
View Article and Find Full Text PDFACS Bio Med Chem Au
February 2024
Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
The extent and molecular basis of interdomain communication in multidomain proteins, central to understanding allostery and function, is an open question. One simple evolutionary strategy could involve the selection of either conflicting or favorable electrostatic interactions across the interface of two closely spaced domains to tune the magnitude of interdomain connectivity. Here, we study a bilobed domain FF34 from the eukaryotic p190A RhoGAP protein to explore one such design principle that mediates interdomain communication.
View Article and Find Full Text PDFCell Rep
December 2023
GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
ARHGAP35, which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP).
View Article and Find Full Text PDFCells
October 2023
Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
p190RhoGAP, which exists in two paralogs, p190RhoGAP-A (p190A) and p190RhoGAP-B (p190B), is a GTPase activating protein (GAP) contributing to the regulation of the cellular activity of RhoGTPases. Recent data showed that M muscarinic acetylcholine receptor (MR) stimulation in neonatal rat cardiac myocytes (NRCM) induces the binding of p190RhoGAP to the long isoform of the regulator of G protein signaling 3 (RGS3L). This complex formation alters the substrate preference of p190RhoGAP from RhoA to Rac1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!