Soft matrices downregulate FAK activity to promote growth of tumor-repopulating cells.

Biochem Biophys Res Commun

Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Electronic address:

Published: January 2017

Tumor-repopulating cells (TRCs) are a tumorigenic sub-population of cancer cells that drives tumorigenesis. We have recently reported that soft fibrin matrices maintain TRC growth by promoting histone 3 lysine 9 (H3K9) demethylation and Sox2 expression and that Cdc42 expression influences H3K9 methylation. However, the underlying mechanisms of how soft matrices induce H3K9 demethylation remain elusive. Here we find that TRCs exhibit lower focal adhesion kinase (FAK) and H3K9 methylation levels in soft fibrin matrices than control melanoma cells on 2D rigid substrates. Silencing FAK in control melanoma cells decreases H3K9 methylation, whereas overexpressing FAK in tumor-repopulating cells enhances H3K9 methylation. Overexpressing Cdc42 or RhoA in the presence of FAK knockdown restores H3K9 methylation levels. Importantly, silencing FAK, Cdc42, or RhoA promotes Sox2 expression and proliferation of control melanoma cells in stiff fibrin matrices, whereas overexpressing each gene suppresses Sox2 expression and reduces growth of TRCs in soft but not in stiff fibrin matrices. Our findings suggest that low FAK mediated by soft fibrin matrices downregulates H3K9 methylation through reduction of Cdc42 and RhoA and promotes TRC growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253317PMC
http://dx.doi.org/10.1016/j.bbrc.2016.12.122DOI Listing

Publication Analysis

Top Keywords

h3k9 methylation
24
fibrin matrices
20
tumor-repopulating cells
12
soft fibrin
12
sox2 expression
12
control melanoma
12
melanoma cells
12
cdc42 rhoa
12
soft matrices
8
trc growth
8

Similar Publications

Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3.

Genome Biol

January 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France.

Background: The DNA/H3K9 methylation and Polycomb-group proteins (PcG)-H3K27me3 silencing pathways have long been considered mutually exclusive and specific to transposable elements (TEs) and genes, respectively in mammals, plants, and fungi. However, H3K27me3 can be recruited to many TEs in the absence of DNA/H3K9 methylation machinery and sometimes also co-occur with DNA methylation.

Results: In this study, we show that TEs can also be solely targeted and silenced by H3K27me3 in wild-type Arabidopsis plants.

View Article and Find Full Text PDF

Analysis of the role of acetylation in and the giardicidal potential of garcinol.

Front Microbiol

January 2025

Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.

Introduction: Post-translational modifications of proteins provide cellular physiology with a broad range of adaptability to the external environment flexibly and rapidly. In the case of the protozoan parasite , the study of these modifications has gained relevance in recent years, mainly focusing on methylation and deacetylation of proteins. This study investigates the significance of acetylation in this protozoan parasite.

View Article and Find Full Text PDF

Macrophages encounter a myriad of biochemical and mechanical stimuli across various tissues and pathological contexts. Notably, matrix rigidity has emerged as a pivotal regulator of macrophage activation through mechanotransduction. However, the precise mechanisms underlying the interplay between mechanical and biochemical cues within the nuclear milieu remain elusive.

View Article and Find Full Text PDF

Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!