Amino acid misincorporation during protein synthesis occurs naturally at a low level. Protein sequence errors, depending on the level and the nature of the misincorporation, can have various consequences. When site-directed mutagenesis is used as a tool for understanding the role of a side chain in enzyme catalysis, misincorporation in a variant with intrinsically low activity may lead to misinterpretations concerning the enzyme mechanism. We report here one more example of such a problem, dealing with flavocytochrome b (Fcb2), a lactate dehydrogenase, member of a family of FMN-dependent L-2-hydroxy acid oxidizing enzymes. Two papers have described the properties of the Fcb2 catalytic base H373Q variant, each one using a different expression system with the same base change for the mutation. The two papers found similar apparent kinetic parameters. But the first one demonstrated the existence of a low level of histidine misincorporation, which led to an important correction of the variant residual activity (Gaume et al. (1995) Biochimie, 77, 621). The second paper did not investigate the possibility of a misincorporation (Tsai et al. (2007) Biochemistry, 46, 7844). The two papers had different mechanistic conclusions. We show here that in this case the misincorporation does not depend on the expression system. We bring the proof that Tsai et al. (2007) were led to an erroneous mechanistic conclusion for having missed the phenomenon as well as for having misinterpreted the crystal structure of the variant. This work is another illustration of the caution one should exercise when characterizing enzyme variants with low activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2016.12.007 | DOI Listing |
Genome Biol Evol
January 2025
Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.
A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.
View Article and Find Full Text PDFJ Pept Sci
March 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
Fluorescent probes are widely used in cellular imaging and disease diagnosis. Acting as substitute carriers, fluorescent probes can also be used to help transport drugs within cells. In this study, commonly used fluorophores, TAMRA (5-carboxytetramethylrhodamine), PBA (1-pyrenebutyric acid), NBD (nitrobenzoxadiazole), OG (Oregon Green), and CF (5-carboxyfluorescein) were conjugated with the dipeptide β-Ala-Lys, the peptide moiety of the well-established peptide transporter substrate β-Ala-Lys(AMCA) (AMCA: 7-amino-4-methyl-coumarin-3-acetic acid) by modifying it with respect to side-chain length and functional end groups.
View Article and Find Full Text PDFFEBS Lett
January 2025
Allgemeine Botanik, Karlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP), Karlsruhe, Germany.
Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
The production of disulfide-containing recombinant proteins often requires refolding of inclusion bodies before purification. A pre-refolding purification step is crucial for effective refolding because impurities in the inclusion bodies interfere with refolding and subsequent purification. This study presents a new pre-refolding procedure using a reversible S-cationization technique for protein solubilization and purification by reversed-phase high performance liquid chromatography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!