Arsenic-contaminated water is a serious hazard for human health. Plankton plays a critical role in the fate and toxicity of arsenic in water by accumulation and biotransformation. Spirulina platensis (S. platensis), a typical plankton, is often used as a supplement or feed for pharmacy and aquiculture, and may introduce arsenic into the food chain, resulting in a risk to human health. However, there are few studies about how S. platensis biotransforms arsenic. In this study, we investigated arsenic biotransformation by S. platensis. When exposed to arsenite (As(III)), S. platensis accumulated arsenic up to 4.1mg/kg dry weight. After exposure to As(III), arsenate (As(V)) was the predominant species making up 64% to 86% of the total arsenic. Monomethylarsenate (MMA(V)) and dimethylarsenate (DMA(V)) were also detected. An arsenite S-adenosylmethionine methyltransferase from S. platensis (SpArsM) was identified and characterized. SpArsM showed low identity with other reported ArsM enzymes. The Escherichia coli AW3110 bearing SparsM gene resulted in As(III) methylation and conferring resistance to As(III). The in vitro assay showed that SpArsM exhibited As(III) methylation activity. DMA(V) and a small amount of MMA(V) were detected in the reaction system within 0.5hr. A truncated SpArsM derivative lacking the last 34 residues still had the ability to methylate As(III). The three single mutants of SpArsM (C59S, C186S, and C238S) abolished the capability of As(III) methylation, suggesting the three cysteine residues are involved in catalysis. We propose that SpArsM is responsible for As methylation and detoxification of As(III) and may contribute to As biogeochemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2016.06.013 | DOI Listing |
J Hazard Mater
November 2024
Géosciences Rennes, UMR 6118, University of Rennes 1, Campus de Beaulieu, 35042 CEDEX Rennes, France.
This work shows that the plastic debris accumulated along with stranded Sargassum biomass in Guadeloupe's beaches contains different forms of arsenic. Results from synchrotron nano X-ray Fluorescence (nanoXRF) and nano X-ray Absorption Near Edge Structure (nanoXANES) show that arsenate (As(V) in a tetrahedral coordination) present in seawater is complexed in the algae cell walls in an octahedral As(V) form, which is subsequently reduced to As(III) within the algae. Inorganic As(III) is either excreted or may undergo methylation and/or binding to glutathione, which is then stored in the algal cells or excreted.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong, Qingdao 266237, China.
Methanogenic archaea are known to play a crucial role in the biogeochemical cycling of arsenic (As); however, the molecular basis of As transformation mediated by methanogenic archaea remains poorly understood. Herein, the characterization of the redox transformation and methylation of As by , a model methanogenic archaeon, is reported. was demonstrated to mediate As(V) reduction via a cytoplasmic As reductase (ArsC) in the exponential phase of methanogenic growth and to methylate As(III) via a cytoplasmic As(III) methyltransferase (ArsM) in the stationary phase.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
The presence of microplastics (MPs) in paddy soil has become a growing concern, yet the influence of MPs on arsenic (As) dynamics in paddy soil remains largely unexplored. A 98-day microcosm experiment was conducted to investigate the impact of MPs on As behavior in As-contaminated paddy soil. The results revealed that conventional microplastics (CMPs) reduced As concentration in porewater by 25-38 %, but substantially increased the percentage of methylated As (% MeAs) in soil by 8-23 times under 5 % dosages after 98-day incubation.
View Article and Find Full Text PDFEnviron Health (Wash)
November 2023
College of Resources and Environment, Southwest University, Chongqing 400716, China.
The metabolism of arsenic (As) plays a crucial role in its health effects. However, the impact of arsenic methylation during early pregnancy on gestational diabetes mellitus (GDM) remains unclear. This study aimed to investigate the associations between As methylation in the first and second trimesters and the incidence of GDM by conducting a prospective cohort study in Chongqing, China.
View Article and Find Full Text PDFEnviron Sci Technol
October 2024
Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
Microbial arsenic (As) methylation is an important process of As biogeochemistry. Only a few As-methylating microorganisms have been isolated from paddy soil, hindering the mechanistic understanding of the process involved. We isolated 54 anaerobic and 32 aerobic bacteria from paddy soil with a high As methylation potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!