Structure elucidation of complex natural products and new organic compounds remains a challenging problem. To support this endeavor, CASE (computer-assisted structure elucidation) expert systems were developed. These systems are capable of generating a set of all possible structures consistent with an ensemble of 2D NMR data followed by selection of the most probable structure on the basis of empirical NMR chemical shift prediction. However, in some cases, empirical chemical shift prediction is incapable of distinguishing the correct structure. Herein, we demonstrate for the first time that the combination of CASE and density functional theory (DFT) methods for NMR chemical shift prediction allows the determination of the correct structure even in difficult situations. An expert system, ACD/Structure Elucidator, was used for the CASE analysis. This approach has been tested on three challenging natural products: aquatolide, coniothyrione, and chiral epoxyroussoenone. This work has demonstrated that the proposed synergistic approach is an unbiased, reliable, and very efficient structure verification and de novo structure elucidation method that can be applied to difficult structural problems when other experimental methods would be difficult or impossible to use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jnatprod.6b00799 | DOI Listing |
Int J Biol Macromol
January 2025
College of Technology and Engineering, MPUAT, Udaipur, Rajasthan-313001, India. Electronic address:
Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.
View Article and Find Full Text PDFChem Asian J
January 2025
IISc: Indian Institute of Science, Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, Bangalore, INDIA.
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.
View Article and Find Full Text PDFALTEX
January 2025
National Institutes of Health, National Institute for Environmental Health Sciences, DTT/NICEATM, Durham, NC, USA.
The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep-resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Zhijiang High tech Zone Yaojiagang Chemical Park Service Center, Yichang, China.
sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!