Development of an extraction method and LC-MS analysis for N-acylated-l-homoserine lactones (AHLs) in wastewater treatment biofilms.

J Chromatogr B Analyt Technol Biomed Life Sci

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China. Electronic address:

Published: January 2017

N-Acylated-l-homoserine lactones (AHLs) play a vital role in Gram-negative bacteria communication by promoting the formation of extracellular polymeric substances (EPS) and biofilms. However, the low concentration of these AHL signals makes the process difficult to understand. A robust and sensitive pretreatment method for AHL detection was developed in this work. Compared with eight different solid-phase extraction (SPE) columns and three various solid extraction method, we found that the UE (ultrasonic extraction) and an Oasis hydrophilic-lipophilic-balanced (HLB) sorbent in column format combined with ultra-performance liquid chromatography linked to tandem mass spectrometry (UPLC-MS/MS) can be successfully used for systematic pretreating moving bed biofilm reactor (MBBR) biological samples to extract AHLs and determine concentration of AHLs in wastewater treatment biofilms. This easy-to-follow protocol makes it ideal for quantitative analyses of AHLs in wastewater treatment biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2016.11.029DOI Listing

Publication Analysis

Top Keywords

ahls wastewater
12
wastewater treatment
12
treatment biofilms
12
extraction method
8
n-acylated-l-homoserine lactones
8
lactones ahls
8
ahls
5
development extraction
4
method lc-ms
4
lc-ms analysis
4

Similar Publications

Combining metagenomic sequencing and molecular docking to understand signaling molecule degradation characteristics of quorum quenching consortia.

Environ Res

January 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.

Quorum quenching consortia (QQC) enriched by special substrates for bioaugmentation is a promising QQ technology to reduce biofouling, sludge yield, and sludge bulking. However, the effect of substrate type on the performance of QQC is still a research gap. This study selected three different substrates, regular AHLs (N-octanoyl-l-homoserine lactone, C8), 3-oxo-AHLs (3-oxo-octanoyl)-l-homoserine lactone, 3-oxo-C8), and AHLs analogs (γ-caprolactone, GCL) to enrich three QQC (C8-QQC, 3OC8-QQC, GCL-QQC).

View Article and Find Full Text PDF

Glycogen-accumulating organisms promote phosphate recovery from wastewater by pilot-scale biofilm sequencing batch reactor: Performance and mechanism.

Bioresour Technol

February 2025

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.

A high phosphate (P) recovery concentration was achieved in pilot-scale biofilm sequencing batch reactor (BSBR) with a low carbon source (C) cost. Especially, a high-abundance glycogen-accumulating organisms (GAOs) (13.93-31.

View Article and Find Full Text PDF

In this study, the impact of exogenous N-acyl-homoserine lactones (AHLs) on greenhouse gas (GHG) emissions in anaerobic/anoxic/oxic (A/A/O) systems was analyzed by manipulating the type and dosage of AHLs. The mechanism behind AHLs' effects on GHG emissions was explored through changes in microbial community structure. Findings revealed that N-octanoyl-homoserine lactone (C8-HSL) and high-dose N-dodecanoyl-homoserine lactone (C12-HSL) increased GHG emissions, while low-dose C12-HSL decreased them.

View Article and Find Full Text PDF

Exogenous C6-HSL enhanced the cometabolic removal of sulfadiazine by an enriched ammonia oxidizing bacteria culture.

Environ Pollut

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China. Electronic address:

Article Synopsis
  • * Exogenous N-acyl homoserine lactones (AHLs) have been shown to improve the efficiency of wastewater treatment microorganisms, though their impact on AOB's ability to cometabolize antibiotics is less explored.
  • * This study investigates the effects of N-hexanoyl-L-homoserine lactone (C6-HSL) on the removal of the antibiotic sulfadiazine (SDZ) by AOB, finding that C6-HSL enhances SDZ degradation by promoting microbial activity and
View Article and Find Full Text PDF

Exogenous signaling molecules N-acyl-homoserine lactones promotes the reconstruction of sludge particles after impact with highly concentrated urea-formaldehyde resin microplastics.

J Environ Manage

December 2024

Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:

In this study, exogenous N-acyl-homoserine lactones (AHLs) was added to resist the stress by high concentration (0.5 g/L) of urea formaldehyde resin microplastics (UF-MPs) on anaerobic granular sludge (AnGS), aiming to provide a viable strategy for AnGS to withstand elevated levels of UF-MPs toxicity elucidate the intricate regulatory mechanism of AHL-mediated AnGS-QS regulation. The results showed that the three different signaling molecules (C4-HSL, C6-HSL, and C8-HSL) improved the performance of AnGS under high concentration (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!