Traditional drug development for Alzheimer's disease (AD) is costly, time consuming and burdened by a very low success rate. An alternative strategy is drug repositioning, redirecting existing drugs for another disease. The large amount of biological data accumulated to date warrants a comprehensive investigation to better understand AD pathogenesis and facilitate the process of anti-AD drug repositioning. Hence, we generated a list of anti-AD protein targets by analyzing the most recent publically available 'omics' data, including genomics, epigenomics, proteomics and metabolomics data. The information related to AD pathogenesis was obtained from the OMIM and PubMed databases. Drug-target data was extracted from the DrugBank and Therapeutic Target Database. We generated a list of 524 AD-related proteins, 18 of which are targets for 75 existing drugs-novel candidates for repurposing as anti-AD treatments. We developed a ranking algorithm to prioritize the anti-AD targets, which revealed CD33 and MIF as the strongest candidates with seven existing drugs. We also found 7 drugs inhibiting a known anti-AD target (acetylcholinesterase) that may be repurposed for treating the cognitive symptoms of AD. The CAD protein and 8 proteins implicated by two 'omics' approaches (ABCA7, APOE, BIN1, PICALM, CELF1, INPP5D, SPON1, and SOD3) might also be promising targets for anti-AD drug development. Our systematic 'omics' mining suggested drugs with novel anti-AD indications, including drugs modulating the immune system or reducing neuroinflammation that are particularly promising for AD intervention. Furthermore, the list of 524 AD-related proteins could be useful not only as potential anti-AD targets but also considered for AD biomarker development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179106 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168812 | PLOS |
Sci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Background And Objective: Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.
View Article and Find Full Text PDFVet Res Commun
December 2024
Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea.
The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!