Atopic dermatitis is a complex disease of heterogeneous pathogenesis, in particular, genetic predisposition, environmental triggers, and their interactions. Indoor air pollution, increasing with urbanization, plays a role as environmental risk factor in the development of AD. However, we still lack a detailed picture of the role of air pollution in the development of the disease. Here, we examined the effect of formaldehyde (FA) exposure on the manifestation of atopic dermatitis and the underlying molecular mechanism in naive rats and in a rat model of atopic dermatitis (AD) produced by neonatal capsaicin treatment. The AD and naive rats were exposed to 0.8 ppm FA, 1.2 ppm FA, or fresh air (Air) for 6 weeks (2 hours/day and 5 days/week). So, six groups, namely the 1.2 FA-AD, 0.8 FA-AD, Air-AD, 1.2 FA-naive, 0.8 FA-naive and Air-naive groups, were established. Pruritus and dermatitis, two major symptoms of atopic dermatitis, were evaluated every week for 6 weeks. After that, samples of the blood, the skin and the thymus were collected from the 1.2 FA-AD, the Air-AD, the 1.2 FA-naive and the Air-naive groups. Serum IgE levels were quantified with ELISA, and mRNA expression levels of inflammatory cytokines from extracts of the skin and the thymus were calculated with qRT-PCR. The dermatitis and pruritus significantly worsened in 1.2 FA-AD group, but not in 0.8 FA-AD, compared to the Air-AD animals, whereas FA didn't induce any symptoms in naive rats. Consistently, the levels of serum IgE were significantly higher in 1.2 FA-AD than in air-AD, however, there was no significant difference following FA exposure in naive animals. In the skin, mRNA expression levels of Th1 cytokines such as TNF-α and IL-1β were significantly higher in the 1.2 FA-AD rats compared to the air-AD rats, whereas mRNA expression levels of Th2 cytokines (IL-4, IL-5, IL-13), IL-17A and TSLP were significantly higher in 1.2 FA-naive group than in the Air-naive group. These results suggested that 1.2 ppm of FA penetrated the injured skin barrier, and exacerbated Th1 responses and serum IgE level in the AD rats so that dermatitis and pruritus were aggravated, while the elevated expression of Th2 cytokines by 1.2 ppm of FA in naive rats was probably insufficient for clinical manifestation. In conclusion, in a rat model of atopic dermatitis, exposure to 1.2 ppm of FA aggravated pruritus and skin inflammation, which was associated with the elevated expression of Th1 cytokines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179079PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168466PLOS

Publication Analysis

Top Keywords

atopic dermatitis
24
naive rats
16
elevated expression
12
th1 cytokines
12
rat model
12
model atopic
12
fa-ad air-ad
12
serum ige
12
mrna expression
12
expression levels
12

Similar Publications

Background: Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

Methods: We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping.

View Article and Find Full Text PDF

Background: Asthma, allergic rhinitis, atopic dermatitis, and food allergy are type 2 inflammation diseases. Since the 1960s, the prevalence of those diseases has steadily increased, presumably due to the "Hygiene hypothesis" which suggests that early exposure of infants to pathogens, siblings, and environmental dust, has a protective effect against the development of allergic diseases. The COVID-19 pandemic increased environmental hygiene due to lockdowns, masks, and social distancing.

View Article and Find Full Text PDF

The changes of intestinal flora and metabolites in atopic dermatitis mice.

Front Microbiol

December 2024

Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China.

Introduction: Atopic dermatitis (AD) is an allergic disease caused by various factors that can affect an individual's appearance and cause psychological stress. Therefore, it is necessary to investigate the underlying mechanisms and develop effective treatment strategies. The gut microbiota and bacterial metabolism play crucial roles in human diseases.

View Article and Find Full Text PDF

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), representing the majority of all lymphomas arising in the skin. The disease treatment focuses on managing symptoms and preventing disease evolution. To date, there is no gold standard for MF-CTCL treatment.

View Article and Find Full Text PDF

The role of the microbiome in allergic dermatitis-related otitis externa: a multi-species comparative review.

Front Vet Sci

December 2024

Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!