We present the first demonstration of a spectrally beam combined diode laser array with subsequent sum-frequency generation (SFG). The combined beam of the diode laser array with 19 emitters has the same beam quality as a single emitter, and the wavelength of each emitter is different. The blue light is generated by sum-frequency mixing of pairs of emitters in the diode laser array. About 93 mW of blue light power is produced using a PPLN crystal. Compared with the SFG of two emitters, this approach can increase the number of lasers participating in nonlinear frequency conversion. Thus, it can enhance the available power.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.004712DOI Listing

Publication Analysis

Top Keywords

diode laser
16
laser array
16
blue light
12
sum-frequency generation
8
generation blue
4
light sum-frequency
4
generation spectrally
4
spectrally combined
4
combined broad-area
4
diode
4

Similar Publications

Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.

View Article and Find Full Text PDF

Research on Wet Etching Techniques for GaInAs/AlInAs/InP Superlattices in Quantum Cascade Laser Fabrication.

Nanomaterials (Basel)

March 2025

Department of Optical Engineering, School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China.

Wet etching is the mainstream fabrication method for single-bar quantum cascade lasers (QCLs). Different etching solutions result in varying etching effects on III-V semiconductor materials. In this study, an efficient and nearly ideal etching solution ratio was proposed for simultaneously etching both InP and GaInAs/AlInAs, and the surface chemical reactions induced by each component of the etching solution during the process were investigated.

View Article and Find Full Text PDF

In recent years, heterostructures composed of two-dimensional (2D) materials have demonstrated broad application prospects across various domains, primarily attributed to their exceptional electrical and optical properties. The superior performance of these heterostructures is rooted in the interlayer interactions and the diversity of the constituent materials. Notably, their applications have been greatly advanced in optical fields such as photodetectors, lasers, modulators, optical sensors, and nonlinear optics.

View Article and Find Full Text PDF

Photobiomodulation (PBM) has demonstrated potential in promoting peripheral nerve regeneration. However, there is a limited and inconclusive study on the application of light-emitting diode (LED) for nerve injury repair. In this study, we designed an 807-nm LED device with high luminous uniformity to investigate the effects of LED-based PBM on peripheral nerve injury repair.

View Article and Find Full Text PDF

Lipomas of the upper lip are among the rarest adipose tissue neoplasms in the oral cavity. The standard treatment for lipomas involves surgical removal, which can be performed using conventional or laser techniques. This case report discusses a 71-year-old male patient with swelling on the left side of his upper lip, clinically diagnosed as an oral lipoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!