We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.004613DOI Listing

Publication Analysis

Top Keywords

soliton frequency
12
frequency combs
12
experimental observation
8
observation coherent
8
coherent cavity
8
cavity soliton
8
combs silica
8
silica microspheres
8
soliton
4
microspheres report
4

Similar Publications

This study reports the observation of complete orthogonally polarized Raman scattering (OPRS) in a 1.0-km high-birefringence fiber (HBF). An incident pump pulse at 1560 nm with an energy of 2.

View Article and Find Full Text PDF

Theory and application of cavity solitons in photonic devices.

Philos Trans A Math Phys Eng Sci

December 2024

SUPA and Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow, Scotland G4 0NG, UK.

Driven optical cavities containing a nonlinear medium support stable dissipative solitons, cavity solitons, in the form of bright or dark spots of light on a uniformly-lit background. Broadening effects due to diffraction or group velocity dispersion are balanced by the nonlinear interaction with the medium while cavity losses balance the input energy. The history, properties, physical interpretation and wide application of cavity solitons are reviewed.

View Article and Find Full Text PDF

In this Letter, we investigate the binding mechanism and motion dynamics of the bound state consisting of two pure-quartic solitons (PQSs) with unequal intensities and find that their movement occurs as an entity under the Raman self-frequency shift. By calculating the forces that induce the relative motion between the unequal PQSs, we derive the balanced conditions for maintaining a near-constant separation and the constant phase profile between them. The predictions are validated by the numerical simulations.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified a new type of bright pulse in Kerr-Gires-Tournois interferometers that exists in a normal dispersion regime.
  • Unlike traditional domain wall locking scenarios, these pulses exhibit unique shapes and increased peak intensities beyond typical limits.
  • They remain stable across a wide range of injection fields, indicating promising applications for generating optical frequency combs (OFC).
View Article and Find Full Text PDF

Microresonator photonic wire bond integration for Kerr-microcomb generation.

Sci Rep

November 2024

FAST Labs™, BAE Systems, 130 Daniel Webster Hwy., Merrimack, 03054, NH, USA.

Extremely high-Q microresonators provide an attractive platform for a plethora of photonic applications including optical frequency combs, high-precision metrology, telecommunication, microwave generation, narrow linewidth lasers, and stable frequency references. Moreover, the desire for compactness and a low power threshold for nonlinear phenomena have spurred investigation into integrated and scalable solutions. Historically, crystalline microresonators with Q ∼ 10 were one of the first material platforms providing unprecedented optical performance in a small form factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!